skip to main content
10.1109/PADS.2008.17acmconferencesArticle/Chapter ViewAbstractPublication PagespadsConference Proceedingsconference-collections
Article

Symbiotic Simulation Systems: An Extended Definition Motivated by Symbiosis in Biology

Published: 03 June 2008 Publication History

Abstract

Although various forms of symbiosis are known in biology, only mutualism has been considered in the context of symbiotic simulation systems. In this paper, we explain why the original definition of symbiotic simulation systems is narrow and why it is important to consider other forms of symbiosis as well. As a consequence we propose an extended definition of symbiotic simulation systems motivated by symbiosis in biology. By using this extended definition, we identify five different types of symbiotic simulation systems which can be applied in various applications. We describe how single systems can be combined and propose a hybrid symbiotic simulation system in the context of semiconductor manufacturing.

References

[1]
V. Akcelik, J. Bielak, G. Biros, I. Epanomeritakis, O. Ghattas, L. F. Kallivokas, and E. J. Kim. A framework for on-line inversion-based 3D site characterization. In Proceedings of the International Conference on Computational Science , pages 717-724, 2004.
[2]
S. Annan and J. Banks. Design of a knowledge-based on-line simulation system to control a manufacturing shop floor. IIE Transactions, 24(3):72-83, 1992.
[3]
H. Aydt, S. J. Turner, W. Cai, and M. Y. H. Low. An agent-based generic framework for symbiotic simulation systems. In A. M. Uhrmacher and D. Weyns, editors, Agents, Simulation and Applications (to appear). Taylor & Francis, 2008.
[4]
H. Aydt, S. J. Turner, W. Cai, M. Y. H. Low, P. Lendermann, and B. P. Gan. Symbiotic simulation control in semiconductor manufacturing. In Proceedings of the International Conference on Computational Science (to appear), 2008.
[5]
J. Cortial, C. Farhat, L. J. Guibas, and M. Rajashekhar. Compressed sensing and time-parallel reduced-order modeling for structural health monitoring using a DDDAS. In Proceedings of the International Conference on Computational Science, pages 1171-1179, 2007.
[6]
W. Davis. Handbook of simulation. In J. Banks, editor, On-Line Simulation: Need and Evolving Research Requirements , pages 465-516. Wiley-Interscience, 1998.
[7]
A. de Bary. Die Erscheinung der Symbiose. Verlag von Karl J. Trübner, Strasbourg, 1879.
[8]
A. Douglas. Symbiotic Interactions. Oxford University Press, 1994.
[9]
C. C. Douglas, J. D. Beezley, J. L. Coen, D. Li, W. Li, A. K. Mandel, J. Mandel, G. Qin, and A. Vodacek. Demonstrating the validity of a wildfire DDDAS. In Proceedings of the International Conference on Computational Science, pages 522-529, 2006.
[10]
G. R. Drake and J. S. Smith. Simulation system for real-time planning, scheduling, and control. In Proceedings of the Winter Simulation Conference, pages 1083-1090, 1996.
[11]
H. ElMaraghy, I. Abdallah, and W. ElMaraghy. On-line simulation and control in manufacturing systems. CIRP Annals-Manufacturing Technology, 47(1):401-404, 1998.
[12]
R. Fujimoto, D. Lunceford, E. Page, and A. M. U. (editors). Grand challenges for modeling and simulation: Dagstuhl report. Technical Report 350, Schloss Dagstuhl. Seminar No 02351, August 2002.
[13]
R. M. Fujimoto. Parallel and Distributed Simulation Systems . Wiley Series on Parallel and Distributed Computing. John Wiley & Sons, Inc., New York, NY, USA, 2000.
[14]
R. M. Fujimoto, R. Guensler, M. Hunter, H. K. Kim, J. Lee, J. Leonard, M. Palekar, K. Schwan, and B. Seshasayee. Dynamic data driven application simulation of surface transportation systems. In Proceedings of the International Conference on Computational Science, pages 425-432, 2006.
[15]
F. Kamrani. Using on-line simulation in UAV path planning. Licentiate Thesis in Electronics and Computer Systems, KTH, Stockholm, Sweden, 2007.
[16]
F. Kamrani and R. Ayani. Using on-line simulation for adaptive path planning of UAVs. In Proceedings of the 11th IEEE International Symposium on Distributed Simulation and Real-time Applications, pages 167-174, Chania, Greece, October 2007.
[17]
D. Katz and S. Manivannan. Exception management on a shop floor using online simulation. In Proceedings of the Winter Simulation Conference, pages 888-896, 1993.
[18]
C. Kennedy, G. K. Theodoropoulos, V. Sorge, E. Ferrari, P. Lee, and C. Skelcher. AIMSS: An architecture for data driven simulations in the social sciences. In Proceedings of the International Conference on Computational Science, pages 1098-1105, 2007.
[19]
D. Knight, Q. Ma, T. Rossman, and Y. Jaluria. Evaluation of fluid-thermal systems by dynamic data driven application systems - part ii. In Proceedings of the International Conference on Computational Science, pages 1189-1196, 2007.
[20]
M. Y. H. Low, K. W. Lye, P. Lendermann, S. J. Turner, R. T. W. Chim, and S. H. Leo. An agent-based approach for managing symbiotic simulation of semiconductor assembly and test operation. In Proceedings of the 4th International Joint Conference on Autonomous Agents and Multi-agent Systems, pages 85-92, New York, NY, USA, 2005. ACM Press.
[21]
G. R. Madey, A.-L. Barabási, N. V. Chawla, M. Gonzalez, D. Hachen, B. Lantz, A. Pawling, T. Schoenharl, G. Szabó, P. Wang, and P. Yan. Enhanced situational awareness: Application of DDDAS concepts to emergency and disaster management. In Proceedings of the International Conference on Computational Science, pages 1090-1097, 2007.
[22]
K. Mahinthakumar, G. von Laszewski, S. R. Ranjithan, D. Brill, J. Uber, K. Harrison, S. Sreepathi, and E. M. Zechman. An adaptive cyberinfrastructure for threat management in urban water distribution systems. In Proceedings of the International Conference on Computational Science, pages 401-408, 2006.
[23]
A. Majumdar, A. Birnbaum, D. J. Choi, A. Trivedi, S. K. Warfield, K. Baldridge, and P. Krysl. A dynamic data driven grid system for intra-operative image guided neurosurgery. In Proceedings of the International Conference on Computational Science, pages 672-679, 2005.
[24]
J. Mandel, J. D. Beezley, L. S. Bennethum, S. Chakraborty, J. L. Coen, C. C. Douglas, J. Hatcher, M. Kim, and A. Vodacek. A dynamic data driven wildland fire model. In Proceedings of the International Conference on Computational Science, pages 1042-1049, 2007.
[25]
J. Mandel, M. Chen, L. P. Franca, C. J. Johns, A. Puhalskii, J. L. Coen, C. C. Douglas, R. Kremens, A. Vodacek, and W. Zhao. A note on dynamic data driven wildfire modeling. In Proceedings of the International Conference on Computational Science, pages 725-731, 2004.
[26]
J. D. McCalley, V. Honavar, S. M. Ryan, W. Q. Meeker, D. Qiao, R. A. Roberts, Y. Li, J. Pathak, M. Ye, and Y. Hong. Integrated decision algorithms for autosteered electric transmission system asset management. In Proceedings of the International Conference on Computational Science , pages 1066-1073, 2007.
[27]
J. D. McCalley, V. Honavar, S. M. Ryan, W. Q. Meeker, R. A. Roberts, D. Qiao, and Y. Li. Auto-steered information-decision processes for electric system asset management. In Proceedings of the International Conference on Computational Science, pages 440-447, 2006.
[28]
J. Michopoulos, P. Tsompanopoulou, E. N. Houstis, and A. Joshi. Agent-based simulation of data-driven fire propagation dynamics. In Proceedings of the International Conference on Computational Science, pages 732-739, 2004.
[29]
J. Michopoulos, P. Tsompanopoulou, E. N. Houstis, J. R. Rice, C. Farhat, M. Lesoinne, and F. Lechenault. DDEMA: A data driven environment for multiphysics applications. In Proceedings of the International Conference on Computational Science, pages 309-318, 2003.
[30]
National Science Foundation. DDDAS: Dynamic data driven applications systems. Program Solicitation 05-570, http://www.nsf.gov/pubs/2005/nsf05570/ nsf05570.htm, 2005.
[31]
S. Paracer and V. Ahmadjian. Symbiosis: An Introduction to Biological Associations. Oxford University Press US, 2000.
[32]
K. Perumalla, R. Fujimoto, T. McLean, and G. Riley. Experiences applying parallel and interoperable network simulation techniques in on-line simulations of military networks. In Proceedings of the 16th Workshop on Parallel and Distributed Simulation, pages 88-95, 2002.
[33]
J. Potoradi, O. Boon, J. Fowler, M. Pfund, and S. Mason. Using simulation-based scheduling to maximize demand fulfillment in a semiconductor assembly facility. In Proceedings of the Winter Simulation Conference, pages 1857-1861, 2002.
[34]
W. Scholl and J. Domaschke. Implementation of modeling and simulation in semiconductor wafer fabrication with time constraints between wet etch and furnace operations. IEEE Transactions on Semiconductor Manufacturing, 13(3):273- 277, August 2000.
[35]
D. Wilkinson. At cross purposes. Nature, 412(6846):485, 2001.
[36]
L. Xue, Z. Hao, D. Li, and X. Liu. Dongting lake floodwater diversion and storage modeling and control architecture based on the next generation network. In Proceedings of the International Conference on Computational Science, pages 841-848, 2007.
[37]
T. Ye, D. Harrison, B. Mo, B. Sikdar, H. Kaur, S. Kalyanaraman, B. Szymanski, and K. Vastola. Traffic management and network control using collaborative on-line simulation. In Proceedings of the IEEE International Conference on Communications , pages 204-209, 2001.

Cited By

View all
  • (2024)An Introduction to Digital TwinsProceedings of the Winter Simulation Conference10.5555/3712729.3712836(1281-1295)Online publication date: 15-Dec-2024
  • (2021)Simulation optimization for a digital twin using a multi-fidelity frameworkProceedings of the Winter Simulation Conference10.5555/3522802.3523002(1-12)Online publication date: 13-Dec-2021
  • (2021)Multi-Agent Systems and Digital Twins for Smarter CitiesProceedings of the 2021 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation10.1145/3437959.3459254(45-55)Online publication date: 21-May-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
PADS '08: Proceedings of the 22nd Workshop on Principles of Advanced and Distributed Simulation
June 2008
196 pages
ISBN:9780769531595

Sponsors

Publisher

IEEE Computer Society

United States

Publication History

Published: 03 June 2008

Check for updates

Author Tag

  1. Symbiotic Simulation

Qualifiers

  • Article

Conference

PADS08
Sponsor:

Acceptance Rates

PADS '08 Paper Acceptance Rate 21 of 52 submissions, 40%;
Overall Acceptance Rate 398 of 779 submissions, 51%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)An Introduction to Digital TwinsProceedings of the Winter Simulation Conference10.5555/3712729.3712836(1281-1295)Online publication date: 15-Dec-2024
  • (2021)Simulation optimization for a digital twin using a multi-fidelity frameworkProceedings of the Winter Simulation Conference10.5555/3522802.3523002(1-12)Online publication date: 13-Dec-2021
  • (2021)Multi-Agent Systems and Digital Twins for Smarter CitiesProceedings of the 2021 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation10.1145/3437959.3459254(45-55)Online publication date: 21-May-2021
  • (2018)Symbiotic simulation systemProceedings of the 2018 Winter Simulation Conference10.5555/3320516.3320685(1358-1369)Online publication date: 9-Dec-2018
  • (2017)Identification of motion-based action potentials in neural bundles using a continuous symbiotic systemProceedings of the Symposium on Modeling and Simulation in Medicine10.5555/3108760.3108761(1-12)Online publication date: 23-Apr-2017
  • (2017)Integration of a physical system, machine learning, simulation, validation and control systems towards symbiotic model engineeringProceedings of the Symposium on Modeling and Simulation of Complexity in Intelligent, Adaptive and Autonomous Systems10.5555/3108414.3108416(1-12)Online publication date: 23-Apr-2017
  • (2016)An efficient approach to collaborative simulation of variable structure systems on multi-core machinesCluster Computing10.1007/s10586-015-0498-919:1(29-46)Online publication date: 1-Mar-2016
  • (2015)Linking symbiotic simulation to enterprise systemsProceedings of the 2015 Winter Simulation Conference10.5555/2888619.2888714(823-834)Online publication date: 6-Dec-2015
  • (2012)Generation of alternatives for model predictive control in manufacturing systemsProceedings of the Winter Simulation Conference10.5555/2429759.2430224(1-2)Online publication date: 9-Dec-2012
  • (2012)Generation of alternatives for model predictive control in manufacturing systemsProceedings of the Winter Simulation Conference10.5555/2429759.2430213(1-2)Online publication date: 9-Dec-2012
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media