skip to main content
10.1145/1389095.1389271acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Rank based variation operators for genetic algorithms

Published: 12 July 2008 Publication History

Abstract

We show how and why using genetic operators that are applied with probabilities that depend on the fitness rank of a genotype or phenotype offers a robust alternative to the Simple GA and avoids some questions of parameter tuning without having to introduce an explicit encoded self-adaptation mechanism. We motivate the algorithm by appealing to previous theoretic analysis that show how different landscapes and population states require different mutation rates to dynamically optimize the balance between exploration and exploitation. We test the algorithm on a range of model landscapes where we can see under what circumstances this Rank GA is likely to outperform the Simple GA and how it outperforms standard heuristics such as 1/N. We try to explain the reasons behind this behaviour.

References

[1]
J.J. Grefenstette, Optimisation of Control Parameters for Genetic Algorithms, IEEE Trans SMC, 16(1), 122--128 (1986).]]
[2]
T. Bäck, Optimal Mutation Rates in Genetic Search. In Proceedings of ICGA 5, ed. S. Forrest, 2--8, Morgan Kaufmann (1993).]]
[3]
J. Cervantes, C. R. Stephens, "Optimal" mutation rates for genetic search. Proceedings of Genetic and Evolutionary Computation Conference (GECCO) 06, pp 1313--1320, Maarten Keijzer et. al. (2006).]]
[4]
J. Cervantes, C. R. Stephens, A Rank Proportional Generic Genetic Algorithm. Lecture Series on Computer and Computational Sciences, Volume 7, 2006, pp 71--74. Brill Academic Publishers.]]
[5]
H. Mühlenbein, How Genetic Algorithms Really Work: Mutation and Hill Climbing, PPSN II, ed.s B. Männer and R. Manderick, 15--25, North Holland (1992).]]
[6]
T. Bäck, Self-adaptation in Genetic Algorithms, In Proceedings of 1st European Conference on Artificial Life, 263--271 MIT Press (1991).]]
[7]
J. Hesser and R. Männer, Towards an Optimal Mutation Probability for Genetic Algorithms, LNCS 496, ed. H.P. Schwefel, Springer Verlag (1991).]]
[8]
T.C. Fogarty, Varying the Probability of Mutation in the Genetic Algorithm, ICGA 3, ed. J.D. Schaffer, 104--109, Morgan-Kaufmann (1989).]]
[9]
C.R. Stephens, I. Garcia Olmedo, J. Mora Vargas and H. Waelbroeck, Self-Adaptation in Evolving Systems, Artificial Life, Vol. 4, Issue 2, 183--201 (1998).]]
[10]
J.E. Smith and T.C. Fogarty, Self Adaptation of Mutation Rates in a Steady State Genetic Algorithm, Proceedings of CEC, 318 -- 323, IEEE Press (1996).]]
[11]
G. Ochoa, I. Harvey and H. Buxton, Error Thresholds and their Relation to Optimal Mutation Rates. In D. Floreano, J-D. Nicoud, and F. Mondada (Eds.) ECAL'99, Lecture Notes in Artificial Intelligence 1674, pp 54--63, Springer-Verlag, Berlin (1999).]]
[12]
G. Ochoa, Setting the Mutation Rate: Scope and Limitations of the 1/L Heuristics, GECCO-2002, pp 315--322, Morgan Kaufmann, San Francisco, CA (2002).]]
[13]
G. Ochoa, Error Thresholds in Genetic Algorithms. Evolutionary Computation, MIT Press (in press).]]
[14]
M. Srinivas, Lait M. Patnaik. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics, 24(4):656--667, April 1994.]]
[15]
M. Sewell, J. Samarabandu, R. Rodrigo, and K. McIsaac. The Rank-scaled Mutation Rate for Genetic Algorithms. International Journal of Information Technology, Volume 3 Number 1, 2006.]]
[16]
H. Hoos, T. Stützle. Evaluating Las Vegas Algorithms: Pitfalls and Remedies. Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, UAI-98 pages 238--245, Morgan Kaufmann Publishers, San Francisco CA, 1998.]]
[17]
H. Ishibuchi and Y. Shibata. A Similarity-Based Mating Scheme for Evolutionary Multiobjective Optimization. E.Cantú-Paz et al.(Eds.):GECCO 2003, LNCS 2723, pp.1065--1076,2003. Copyright Springer Verlag Berlin Heidelberg 2003.]]
[18]
H. Ishibuchi and K. Narukawa. Recombination of similar parents in EMO algorithms. Lecture Notes in Computer Science 3410:Evolutionary Multi-Criterion Optimization, pp.265--279, Springer, Berlin, March 2005.]]
[19]
G. Chakraborty, K. Hoshi. Rank Based Crossover - A new technique to improve the speed and Quality of convergence in GA. Proceedings of the 1999 Congress on Evolutionary Computation, CEC 99.]]

Cited By

View all
  • (2024)Novel Approaches to the Minimum Identifying Code Problem Using Enhanced Genetic AlgorithmsAdvances in Soft Computing10.1007/978-3-031-75543-9_8(97-110)Online publication date: 17-Oct-2024
  • (2023)Applying Genetic Algorithms to Validate a Conjecture in Graph Theory: The Minimum Dominating Set ProblemAdvances in Computational Intelligence10.1007/978-3-031-47765-2_20(271-282)Online publication date: 9-Nov-2023
  • (2019)The ($$1+\lambda $$1+ý) Evolutionary Algorithm with Self-Adjusting Mutation RateAlgorithmica10.1007/s00453-018-0502-x81:2(593-631)Online publication date: 1-Feb-2019
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '08: Proceedings of the 10th annual conference on Genetic and evolutionary computation
July 2008
1814 pages
ISBN:9781605581309
DOI:10.1145/1389095
  • Conference Chair:
  • Conor Ryan,
  • Editor:
  • Maarten Keijzer
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 12 July 2008

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. parameter tuning
  2. rank GA
  3. robustness

Qualifiers

  • Research-article

Conference

GECCO08
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)7
  • Downloads (Last 6 weeks)1
Reflects downloads up to 08 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Novel Approaches to the Minimum Identifying Code Problem Using Enhanced Genetic AlgorithmsAdvances in Soft Computing10.1007/978-3-031-75543-9_8(97-110)Online publication date: 17-Oct-2024
  • (2023)Applying Genetic Algorithms to Validate a Conjecture in Graph Theory: The Minimum Dominating Set ProblemAdvances in Computational Intelligence10.1007/978-3-031-47765-2_20(271-282)Online publication date: 9-Nov-2023
  • (2019)The ($$1+\lambda $$1+ý) Evolutionary Algorithm with Self-Adjusting Mutation RateAlgorithmica10.1007/s00453-018-0502-x81:2(593-631)Online publication date: 1-Feb-2019
  • (2011)Rank Based Evolution of Real Parameters on Noisy Fitness FunctionsProceedings of the 2011 10th Mexican International Conference on Artificial Intelligence10.1109/MICAI.2011.40(72-76)Online publication date: 26-Nov-2011
  • (2011)AMGA2: improving the performance of the archive-based micro-genetic algorithm for multi-objective optimizationEngineering Optimization10.1080/0305215X.2010.49154943:4(377-401)Online publication date: Apr-2011
  • (2010)Emerging traits in the application of an evolutionary algorithm to a scalable bioinformatics problemIEEE Congress on Evolutionary Computation10.1109/CEC.2010.5585961(1-8)Online publication date: Jul-2010
  • (2009)Theoretical analysis of rank-based mutationProceedings of the Eleventh conference on Congress on Evolutionary Computation10.5555/1689599.1689791(1455-1462)Online publication date: 18-May-2009
  • (2009)Theoretical analysis of rank-based mutation - combining exploration and exploitation2009 IEEE Congress on Evolutionary Computation10.1109/CEC.2009.4983114(1455-1462)Online publication date: May-2009

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media