skip to main content
10.1145/1390768.1390802acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Good reduction of puiseux series and complexity of the Newton-Puiseux algorithm over finite fields

Published:20 July 2008Publication History

ABSTRACT

In [12], we sketched a numeric-symbolic method to compute Puiseux series with floating point coefficients. In this paper, we address the symbolic part of our algorithm. We study the reduction of Puiseux series coefficients modulo a prime ideal and prove a good reduction criterion sufficient to preserve the required information, namely Newton polygon trees. We introduce a convenient modification of Newton polygons that greatly simplifies proofs and statements of our results. Finally, we improve complexity bounds for Puiseux series calculations over finite fields, and estimate the bit-complexity of polygon tree computation.

References

  1. E. Brieskorn and H. Knörrer. Plane Algbebraic Curves. Birkhaüser, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  2. C. Chevalley. Introduction to the Theory of Algebraic Functions of One Variable, volume 6 of Mathematical Surveys. AMS, 1951.Google ScholarGoogle Scholar
  3. H. Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. B. Deconinck and M. S. Patterson. Computing the Abel Map. preprint, 2007.Google ScholarGoogle Scholar
  5. B. Deconinck and M. van Hoeij. Computing Riemann matrices of algebraic curves. Phys. D, 152/153:28--46, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  6. D. Duval. Diverses questions relatives au calcul formel avec des nombres algébriques. PhD thesis, Université de Grenoble, 1987. Thèse d'Etat.Google ScholarGoogle Scholar
  7. D. Duval. Rational Puiseux Expansions. Compositio Mathematica, 70:119--154, 1989.Google ScholarGoogle Scholar
  8. B. Dwork and P. Robba. On natural radii of p-adic convergence. Trans. Amer. Math. Soc., 256:199--213, 1979.Google ScholarGoogle Scholar
  9. M. Eichler. Introduction to the Theory of Algebraic Numbers and Functions. Academic Press, 1966.Google ScholarGoogle Scholar
  10. W. Fulton. Hurwitz Schemes and Irreducibility of Moduli of Algebraic Curves. Annals of Mathematics, 90:542--575, 1969.Google ScholarGoogle ScholarCross RefCross Ref
  11. H. T. Kung and J. F. Traub. All algebraic functions can be computed fast. J. ACM, 25(2):245--260, 1978. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Poteaux. Computing monodromy groups defined by plane algebraic curves. In Proceedings of the 2007 International Workshop on Symbolic-numeric Computation, pages 36--45, New-York, 2007. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Poteaux and M. Rybowicz. Towards a Symbolic-Numeric Method to Compute Puiseux Series: The Modular Part, 2008. http://arxiv.org/abs/0803.3027.Google ScholarGoogle Scholar
  14. V. Shoup. A Computational Introduction to Number Theory. Cambridge University Press, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. B. M. Trager. Integration of Algebraic Functions. PhD thesis, Department of EECS MIT, 1984.Google ScholarGoogle Scholar
  16. M. van Hoeij. An Algorithm for Computing an Integral Basis in an Algebraic Function Field. Journal of Symbolic Computation, 18:353--363, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, Cambridge, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. P. G. Walsh. A Polynomial-time Complexity Bound for the Computation of the Singular Part of an Algebraic Function. Mathematics of Computation, 69:1167--1182, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. O. Zariski. Le problème des modules pour les branches planes. Hermann, Paris, 1981.Google ScholarGoogle Scholar

Index Terms

  1. Good reduction of puiseux series and complexity of the Newton-Puiseux algorithm over finite fields

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        ISSAC '08: Proceedings of the twenty-first international symposium on Symbolic and algebraic computation
        July 2008
        348 pages
        ISBN:9781595939043
        DOI:10.1145/1390768

        Copyright © 2008 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 20 July 2008

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate395of838submissions,47%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader