skip to main content
10.1145/1393921.1394009acmconferencesArticle/Chapter ViewAbstractPublication PagesislpedConference Proceedingsconference-collections
research-article

A framework for energy consumption based design space exploration for wireless sensor nodes

Published: 11 August 2008 Publication History

Abstract

In wireless sensor networks due to the small transmission distances involved, the computation energy along with the radio energy determines the battery life. Energy consumption of error control codes (ECCs) is a complex function of the energy consumption in computing encoding-decoding, transmitting "redundant" bits and energy saved by coding gain. This paper presents a methodology, which integrates computation and radio energy for searching an energy optimal ECC. Based on this methodology, a design space exploration framework and the energy model of sensor node have been developed. Exploration results show that the energy optimal ECC saves 15-58% node energy for given parameters.

References

[1]
M. A. M. Vieira, Jr. C. N. Coelho, Jr. D. C. da Silva, and J. M. da Mata. Survey on wireless sensor network devices. In IEEE Conference on Emerging Technologies and Factory Automation, pages 537--544, Sept. 2003.
[2]
G. Balakrishnan, M. Yang, Y. Jiang, and Y. Kim. Performance analysis of error control codes for wireless sensor networks. In International Conference on Information Technology, pages 876--879, 2007.
[3]
S. L. Howard, C. Schlegel, and K. Iniewski. Error control coding in low-power wireless sensor networks: When is ECC energy-efficient? EURASIP Journal on Wireless Communications and Networking, 2006(2):1--14, 2006.
[4]
R. Min and A. Chandrakasan. A framework for energy-scalable communication in high-density wireless networks. In International Symposium on Low Power Electronics and Design, pages 36--41, 2002.
[5]
P. Lettieri, C. Fragouli, and M. B. Srivastava. Low power error control for wireless links. In ACM/IEEE International Conference on Mobile Computing and Networking, pages 139--150, 1997.
[6]
E. Shih, S. H. Cho, F. S. Lee, B. H. Calhoun, and A. Chandrakasan. Design considerations for energy-efficient radios in wireless microsensor networks. The Journal of VLSI Signal Processing, 37(1):77--94, 2004.
[7]
Sim-Panalyzer. http://www.eecs.umich.edu/~Panalyzer/.
[8]
J. G. Proakis. Digital Communications. McGraw-Hill, 4th Edition, New York, 2000.
[9]
T. H. Lee. The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge Univ. Press, Cambridge, U.K., 1998.
[10]
H. J. Bergveld, K. M. M. van Kaam, D. M. W. Leenaerts, K. J. P. Philips, A. W. P. Vaassen, and G. Wetkzer. A low-power highly digitized receiver for 2.4-GHz-band GFSK applications. IEEE Transactions on Microwave Theory and Techniques, 53(2):453--461, 2005.
[11]
H. Komurasaki, T. Sano, T. Heima, K. Yamamoto, H. Wakada, I. Yasui, M. Ono, T. Miwa, H. Sato, T. Miki, and N. Kato. A 1.8-V operation RF CMOS transceiver for 2.4-GHz-band GFSK applications. IEEE Journal of Solid-State Circuits, 38(5):817--825, 2003.
[12]
U. Yodprasit and C. C. Enz. A 1.5-V 75-dB dynamic range third-order Gm -- C filter integrated in a 0.18-μm standard digital CMOS process. IEEE Journal of Solid-State Circuits, 38(7):1189--1197, 2003.
[13]
P. A. Francese and P. Q. Huang. A 13-b 1.1-MHz oversampled DAC with semidigital reconstruction filtering. IEEE Journal of Solid-State Circuits, 39(12):2098--2106, 2004.
[14]
Y. H. Chee, J. Rabaey, and A. M. Niknejad. A class A/B low power amplifier for wireless sensor networks. In International Symposium on Circuits and Systems, pages IV 409--412, 2004.
[15]
J. P. Odenwalder. Error Control Coding Handbook. Linkabit Corporation, San Diego, CA, July 15, 1976.
[16]
K. Martinez, P. Padhy, A. Riddoch, H. Ong, and J. K. Hart. Glacial environment monitoring using sensor networks. In Real-World Wireless Sensor Networks Workshop, 2005.
[17]
G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M. Ruiz, and J. Lees. Deploying a wireless sensor network on an active volcano. IEEE Internet Computing, 10(2):18--25, Mar 2006.
[18]
T. S. Rappaport. Wireless Communications Principles and Practice. Prentice Hall, 2nd Edition, 1996.

Cited By

View all
  • (2018)A Framework to Design the Computational Load Distribution of Wireless Sensor Networks in Power Consumption Constrained EnvironmentsSensors10.3390/s1804095418:4(954)Online publication date: 23-Mar-2018
  • (2016)Power Analysis of Sensor Node Using Simulation ToolCircuits and Systems10.4236/cs.2016.71334807:13(4236-4247)Online publication date: 2016
  • (2014)Efficient sensor node determination using proteus2014 International Conference on Contemporary Computing and Informatics (IC3I)10.1109/IC3I.2014.7019721(804-810)Online publication date: Nov-2014
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ISLPED '08: Proceedings of the 2008 international symposium on Low Power Electronics & Design
August 2008
396 pages
ISBN:9781605581095
DOI:10.1145/1393921
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 August 2008

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. computation-radio energy trade-off
  2. energy models
  3. error control codes
  4. low energy
  5. wireless sensor networks

Qualifiers

  • Research-article

Conference

ISLPED08
Sponsor:

Acceptance Rates

Overall Acceptance Rate 398 of 1,159 submissions, 34%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2018)A Framework to Design the Computational Load Distribution of Wireless Sensor Networks in Power Consumption Constrained EnvironmentsSensors10.3390/s1804095418:4(954)Online publication date: 23-Mar-2018
  • (2016)Power Analysis of Sensor Node Using Simulation ToolCircuits and Systems10.4236/cs.2016.71334807:13(4236-4247)Online publication date: 2016
  • (2014)Efficient sensor node determination using proteus2014 International Conference on Contemporary Computing and Informatics (IC3I)10.1109/IC3I.2014.7019721(804-810)Online publication date: Nov-2014
  • (2012)Increasing the energy efficiency of WSNs using algebraic soft-decision reed-solomon decoders2012 IEEE Asia Pacific Conference on Circuits and Systems10.1109/APCCAS.2012.6418968(49-52)Online publication date: Dec-2012
  • (2009)Power consumption in wireless sensor networksProceedings of the 7th International Conference on Frontiers of Information Technology10.1145/1838002.1838017(1-9)Online publication date: 16-Dec-2009
  • (2009)A framework for energy-consumption-based design space exploration for wireless sensor nodesIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2009.201886528:7(1017-1024)Online publication date: 1-Jul-2009
  • (2009)A Data Transmission Mechanism for Survivable Sensor NetworksProceedings of the 2009 IEEE International Conference on Networking, Architecture, and Storage10.1109/NAS.2009.10(9-15)Online publication date: 9-Jul-2009

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media