skip to main content
research-article

Real-time data driven deformation using kernel canonical correlation analysis

Published:01 August 2008Publication History
Skip Abstract Section

Abstract

Achieving intuitive control of animated surface deformation while observing a specific style is an important but challenging task in computer graphics. Solutions to this task can find many applications in data-driven skin animation, computer puppetry, and computer games. In this paper, we present an intuitive and powerful animation interface to simultaneously control the deformation of a large number of local regions on a deformable surface with a minimal number of control points. Our method learns suitable deformation subspaces from training examples, and generate new deformations on the fly according to the movements of the control points. Our contributions include a novel deformation regression method based on kernel Canonical Correlation Analysis (CCA) and a Poisson-based translation solving technique for easy and fast deformation control based on examples. Our run-time algorithm can be implemented on GPUs and can achieve a few hundred frames per second even for large datasets with hundreds of training examples.

Skip Supplemental Material Section

Supplemental Material

a91-feng.mov

mov

21.2 MB

References

  1. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. 2005. Scape: shape completion and animation of people. ACM Transactions on Graphics 24, 3, 408--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Chai, J., and Hodgins, J. 2005. Performance animation from low-dimensional control signals. ACM TOG 24, 3, 686--696. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Deng, Z., Chiang, P.-Y., Fox, P., and Neumann, U. 2006. Animating blendshape faces by cross-mapping motion capture data. In I3D '06: Proceedings of the 2006 symposium on Interactive 3D graphics and games, 43--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Der, K., Sumner, R., and Popović, J. 2006. Inverse kinematics for reduced deformable models. ACM Transactions on Graphics 25, 3, 1174--1179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dontcheva, M., Yngve, G., and Popivic, Z. 2003. Layered acting for character animation. ACM TOG 22, 3, 409--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Grochow, K., Martin, S., Hertzmann, A., and Popivic, Z. 2004. Style-based inverse kinematics. ACM TOG 23, 3, 520--529. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Hotelling, H. 1936. Relations between two sets of variates. Biometrika 28, 321--377.Google ScholarGoogle ScholarCross RefCross Ref
  8. James, D., and Twigg, C. 2005. Skinning mesh animations. ACM Transactions on Graphics 24, 3, 399--407. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Joshi, P., Tien, W., Desbrun, M., and Pighin, F. 2003. Learning controls for blend shape based realistic facial animation. In Proceedings of the 2003 Eurographics/SIGGRAPH symposium on computer animation, 162--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Kavan, L., Collins, S., Zara, J., and O'Sullivan, C. 2007. Skinning with dual quaternions. In I3D '07: Proceedings of the 2007 symposium on Interactive 3D graphics and games, 39--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Kavan, L., McDonnell, R., Dobbyn, S., Zara, J., and O'Sullivan, C. 2007. Skinning arbitrary deformations. In I3D '07: Proceedings of the 2007 symposium on Interactive 3D graphics and games, 53--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kircher, S., and Garland, M. 2006. Editing arbitrarily deforming surface animations. ACM Transactions on Graphics 25, 3, 1098--1107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Lau, M., Chai, J., Xu, Y.-Q., and Shum, H.-Y. 2007. Face poser: Interactive modeling of 3d facial expressions using model priors. In ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA 2007), 161--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Magnenat-Thalmann, N., Laperrire, R., and Thalmann, D. 1988. Joint-dependent local deformations for hand animation and object grasping. In Graphics Interface, 26--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Melzer, T., Reitera, M., and Bischofb, H. 2003. Appearance models based on kernel canonical correlation analysis. Pattern Recognition 36, 9, 1961--1971.Google ScholarGoogle ScholarCross RefCross Ref
  16. Meyer, M., and Anderson, J. 2007. Key point subspace acceleration and soft caching. ACM Transactions on Graphics 26, 3, 74.1--74.8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Mohr, A., and Gleicher, M. 2003. Building efficient, accurate character skins from examples. ACM Transactions on Graphics 22, 3, 562--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. nVidia Cuda. Compute unified device architecture (cuda). http://developer.nvidia.com/object/cuda.html.Google ScholarGoogle Scholar
  19. Park, S., and Hodgins, J. 2006. Capturing and animating skin deformation in human motion. ACM Transactions on Graphics 25, 3, 881--889. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Shi, L., Yu, Y., Bell, N., and Feng, W.-W. 2006. A fast multigrid algorithm for mesh deformation. ACM Transactions on Graphics 25, 3, 1108--1117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Sumner, R., and Popović, J. 2004. Deformation transfer for triangle meshes. ACM Transactions on Graphics 23, 3, 397--403. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Sumner, R., Zwicker, M., Gotsman, C., and Popović, J. 2005. Mesh-based inverse kinematics. ACM Transactions on Graphics 24, 3, 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Wang, R., Pulli, K., and Popović, J. 2007. Real-time enveloping with rotational regression. ACM Transactions on Graphics 26, 3, 73.1--73.9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Weber, O., Sorkine, O., Lipman, Y., and Gotsman, C. 2007. Context-aware skeletal shape deformation. Computer Graphics Forum (Eurographics 2007) 26, 3, 265--274.Google ScholarGoogle Scholar
  25. White, R., Crane, K., and Forsyth, D. 2007. Capturing and animating occluded cloth. ACM Transactions on Graphics 26, 3, 34.1--34.8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Xu, W., Zhou, K., Yu, Y., Tan, Q., Peng, Q., and Guo, B. 2007. Gradient domain editing of deforming mesh sequences. ACM Transactions on Graphics 26, 3, 84.1--84.10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., and Shum, H.-Y. 2004. Mesh editing with poisson-based gradient field manipulation. ACM Transactions on Graphics (special issue for SIGGRAPH 2004) 23, 3, 641--648. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Zhang, L., Snavely, N., Curless, B., and Seitz, S. M. 2004. Spacetime faces: High-resolution capture for modeling and animation. ACM Transactions on Graphics 23, 3, 548--558. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Real-time data driven deformation using kernel canonical correlation analysis

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 27, Issue 3
      August 2008
      844 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/1360612
      Issue’s Table of Contents

      Copyright © 2008 ACM

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 August 2008
      Published in tog Volume 27, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader