skip to main content
research-article

PSPACE bounds for rank-1 modal logics

Published:02 March 2009Publication History
Skip Abstract Section

Abstract

For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank-1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACE-bounds for a number of logics, including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant proof-theoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way.

References

  1. Barr, M. 1993. Terminal coalgebras in well-founded set theory. Theor. Comput. Sci. 114, 299--315. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bartels, F. 2003. Generalised coinduction. Math. Struct. Comput. Sci. 13, 321--348. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bartels, F., Sokolova, A., and de Vink, E. P. 2004. A hierarchy of probabilistic system types. Theor. Comput. Sci. 327, 3--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Blackburn, P., de Rijke, M., and Venema, Y. 2001. Modal Logic. Cambridge University Press, Cambridge. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Book, R., Long, T., and Selman, A. 1984. Quantitative relativizations of complexity classes. SIAM J. Comput. 13, 461--487. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Carlyle, J. W. and Paz, A. 1971. Realizations by stochastic finite automata. J. Comput. Syst. Sci. 5, 26--40.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Caro, F. D. 1988. Graded modalities II (canonical models). Studia Logica 47, 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  8. Chandra, A., Kozen, D., and Stockmeyer, L. 1981. Alternation. J. ACM 28, 114--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chellas, B. 1980. Modal Logic. Cambridge University Press, Cambridge.Google ScholarGoogle Scholar
  10. Cîrstea, C. and Pattinson, D. 2007. Modular construction of complete coalgebraic logics. Theor. Comput. Sci. 388, 83--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. D'Agostino, G. and Visser, A. 2002. Finality regained: A coalgebraic study of Scott-sets and multisets. Arch. Math. Logic 41, 267--298.Google ScholarGoogle ScholarCross RefCross Ref
  12. De Nivelle, H., Schmidt, R. A., and Hustadt, U. 2000. Resolution-Based methods for modal logics. Logic J. IGPL 8, 265--292.Google ScholarGoogle ScholarCross RefCross Ref
  13. Demri, S. and Lugiez, D. 2006. Presburger modal logic is only PSPACE-complete. In Proceedings of the 3rd International Joint Conference on Automated Reasoning (IJCAR'06), U. Furbach and N. Shankar, Eds. Lecture Notes in Artificial Intelligence, vol. 4130. Springer, Berlin, 541--556. Full version available as Res. rep. LSV-06-15, Laboratoire Spécification et Vérification, Ecole Normale Supérieure de Cachan.Google ScholarGoogle Scholar
  14. Emerson, E. A. and Halpern, J. Y. 1985. Decision procedures and expressiveness in the temporal logic of branching time. J. Comput. Syst. Sci. 30, 1--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Enjalbert, P. and del Cerro, L. F. 1989. Modal resolution in clausal form. Theor. Comput. Sci. 65, 1--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Fagin, R. and Halpern, J. Y. 1994. Reasoning about knowledge and probability. J. ACM 41, 340--367. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fine, K. 1972. In so many possible worlds. Notre Dame J. Formal Logic 13, 516--520.Google ScholarGoogle ScholarCross RefCross Ref
  18. Halpern, J. and Rêgo, L. C. 2007. Characterizing the NP-PSPACE gap in the satisfiability problem for modal logic. In Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI'07), M. M. Veloso, Ed. 2306--2311.Google ScholarGoogle Scholar
  19. Halpern, J. Y. and Moses, Y. O. 1992. A guide to completeness and complexity for modal logics of knowledge and belief. Artif. Intell. 54, 319--379. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hansen, H. H. and Kupke, C. 2004. A coalgebraic perspective on monotone modal logic. In Coalgebraic Methods in Computer Science, J. Adámek and S. Milius, Eds. Electronic Notes in Theoretical Computer Science, vol. 106. Elsevier, Amsterdam, 121--143.Google ScholarGoogle Scholar
  21. Heifetz, A. and Mongin, P. 2001. Probabilistic logic for type spaces. Games Econom. Behav. 35, 31--53.Google ScholarGoogle ScholarCross RefCross Ref
  22. Jacobs, B. 2000. Towards a duality result in coalgebraic modal logic. Coalgebraic Methods in Computer Science Workshop, H. Reichel, Ed. Electronic Notes in Theoretical Computer Science, vol. 33. Elsevier, Amsterdam.Google ScholarGoogle ScholarCross RefCross Ref
  23. Kupke, C., Kurz, A., and Pattinson, D. 2005. Ultrafilter extensions for coalgebras. In Proceedings of the 1st International Conference on Algebra and Coalgebra in Computer Science (CALCO'05), J. L. Fiadeiro et al. Eds. Lecture Notes in Computer Science, vol. 3629. Springer, Berlin, 263--277.Google ScholarGoogle Scholar
  24. Kurz, A. 2001. Specifying coalgebras with modal logic. Theor. Comput. Sci. 260, 119--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ladner, R. 1977. The computational complexity of provability in systems of modal propositional logic. SIAM J. Comput. 6, 467--480.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Larsen, K. and Skou, A. 1991. Bisimulation through probabilistic testing. Inf. Comput. 94, 1--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Mossakowski, T., Schröder, L., Roggenbach, M., and Reichel, H. 2006. Algebraic-coalgebraic specification in CoCASL. J. Logic Algebraic Program. 67, 146--197.Google ScholarGoogle ScholarCross RefCross Ref
  28. Ohlbach, H. J. and Koehler, J. 1999. Modal logics, description logics and arithmetic reasoning. Artig. Intel. 109, 1--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Pacuit, E. and Salame, S. 2004. Majority logic. In Proceedings of the 9th International Conference on Principles of Knowledge Representation and Reasoning (KR'04), D. Dubois et al. Eds. AAAI Press, 598--605.Google ScholarGoogle Scholar
  30. Pattinson, D. 2001. Semantical principles in the modal logic of coalgebras. In Proceedings of the 18th Annual Symposium on Theoretical Aspects of Computer Science (STACS'01). A. Ferreira and H. Reichel, Eds. Lecture Notes in Computer Science, vol. 2010. Springer, Berlin, 514--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Pattinson, D. 2003. Coalgebraic modal logic: Soundness, completeness and decidability of local consequence. Theor. Comput. Sci. 309, 177--193. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Pattinson, D. 2004. Expressive logics for coalgebras via terminal sequence induction. Notre Dame J. Formal Logic 45, 19--33.Google ScholarGoogle ScholarCross RefCross Ref
  33. Pauly, M. 2002. A modal logic for coalitional power in games. J. Logic Comput. 12, 149--166.Google ScholarGoogle ScholarCross RefCross Ref
  34. Pauly, M. 2005. On the role of language in social choice theory. Unpublished manuscript.Google ScholarGoogle Scholar
  35. Rabin, M. 1963. Probabilistic automata. Inf. Control 6, 230--245.Google ScholarGoogle ScholarCross RefCross Ref
  36. Rößiger, M. 2000. Coalgebras and modal logic. In Coalgebraic Methods in Computer Science (CMCS'00), H. Reichel, Ed. Electronic Notes in Theoretical Computer Science, vol. 33. Elsevier, Amsterdam.Google ScholarGoogle Scholar
  37. Rothe, J., Tews, H., and Jacobs, B. 2001. The Coalgebraic Class Specification Language CCSL. J. Universal Comput. Sci. 7, 175--193.Google ScholarGoogle Scholar
  38. Schrijver, A. 1986. Theory of Linear and Integer Programming. John Wiley & Sons, Chichester, UK. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Schröder, L. 2007. A finite model construction for coalgebraic modal logic. J. Logic Algebraic Program. 73, 97--110.Google ScholarGoogle ScholarCross RefCross Ref
  40. Schröder, L. 2007. Expressivity of coalgebraic modal logic: The limits and beyond. Theor. Comput. Sci. 390, 230--247. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Schröder, L. and Pattinson, D. 2006. PSPACE reasoning for rank-1 modal logics. In Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06), R. Alur, Ed. IEEE Computer Society Press, 231--240. Presentation slides available under www.informatik.uni-bremen.de/~lschrode/slides/rank1pspace.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Schröder, L. and Pattinson, D. 2007. Modular algorithms for heterogeneous modal logics. In Proceedings of the 34th International Colloquium on Automata, Languages and Programming (ICALP'07) L. Avge et al., Eds. Lecture Notes in Computer Science, vol. 4596. Springer, Berlin, 459--471.Google ScholarGoogle Scholar
  43. Tobies, S. 2001. PSPACE reasoning for graded modal logics. J. Logic Comput. 11, 85--106.Google ScholarGoogle ScholarCross RefCross Ref
  44. Troelstra, A. S. and Schwichtenberg, H. 1996. Basic Proof Theory. Cambridge Tracts in Theoretical Computer Science, vol. 43. Cambridge University Press, Cambridge. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Turi, D. and Plotkin, G. 1997. Towards a mathematical operational semantics. In Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science (LICS'97). IEEE Computer Society Press, 280--291. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. van der Hoek, W. and Meyer, J.-J. 1992. Graded modalities in epistemic logic. In Proceedings of the 2nd International Symposium on Logical Foundations of Computer Science (LFCS'92), A. Nerode and M. A. Taitslin, Eds. Lecture Notes in Computer Science, vol. 620. Springer, Berlin, 503--514. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Vardi, M. 1989. On the complexity of epistemic reasoning. In Proceedings of the 4th Annual IEEE Symposium on Logic in Computer Science (LICS'89). IEEE Computer Society Press, 243--251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Vardi, M. Y. 1996. Why is modal logic so robustly decidable? In Proceedings of the DIMACS Workshop on Descriptive Complexity and Finite Models, N. Immerman and P. G. Kolaitis, Eds. DIMACS Series. Discrete Mathematics and Theoretical Computer Science, vol. 31. American Mathematical Society, 149--184.Google ScholarGoogle Scholar
  49. Venema, Y. 2006. Automata and fixed point logics: A coalgebraic perspective. Inf. Comput. 204, 637--678.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. PSPACE bounds for rank-1 modal logics

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Computational Logic
            ACM Transactions on Computational Logic  Volume 10, Issue 2
            February 2009
            275 pages
            ISSN:1529-3785
            EISSN:1557-945X
            DOI:10.1145/1462179
            Issue’s Table of Contents

            Copyright © 2009 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 2 March 2009
            • Accepted: 1 November 2007
            • Received: 1 June 2007
            Published in tocl Volume 10, Issue 2

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader