skip to main content
research-article
Free Access

Algorithmic systems biology

Authors Info & Claims
Published:01 May 2009Publication History
Skip Abstract Section

Abstract

The convergence of CS and biology will serve both disciplines, providing each with greater power and relevance.

References

  1. Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman and Hall, 2006.Google ScholarGoogle Scholar
  2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., and Yovine, S. The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 1 (1995), 3--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Auffray, C. and Nottale, L. Scale relativity theory and integrative systems biology: Founding principles and scale laws. Progress in Biophysics and Molecular Biology 97 (2008), 79--114.Google ScholarGoogle ScholarCross RefCross Ref
  4. Benner, S.A. and Sismour, A.M. Synthetic biology. Nature Reviews Genetics 6 (2005), 533--544.Google ScholarGoogle ScholarCross RefCross Ref
  5. Bergstra, J.A., Ponse, A., and Smolka, S.A. Handbook of Process Algebras, Elsevier, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bernardo, M., Degano, P., and Zavattaro, G. Formal Methods for Computational Systems Biology. LNCS 5016, Springer, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Boogerd, F. et al. Systems Biology: Philosophical Foundations. Elsevier, 2007.Google ScholarGoogle Scholar
  8. Breckling, B. Individual-based modelling: Potentials and limitations. Scientific World Journal 2 (April 19,2002). 1044--1062.Google ScholarGoogle Scholar
  9. Cassman, M., Arkin, A., Doyle, F., Katagiri, F., Lauffenburg, D., and Stokes, C. International Research and Development in Systems Biology, WTEC Panel on Systems Biology final report (Oct. 2005).Google ScholarGoogle Scholar
  10. Chiarugi, D., Degano, P., and Marangoni, R. A computational approach to the functional screening of genomes. PLoS Comput Biol 3, 9 (Sept. 3, 2007), 1801--1806.Google ScholarGoogle ScholarCross RefCross Ref
  11. Ciocchetta, F. and Hillston, J. Process algebras in systems biology. In Formal Methods for Computational Systems Biology, LNCS 5016. Springer, 2008, 313--365. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Cohen, J. The crucial role of CS in systems and synthetic biology. Commun. ACM 51, 5 (May 2008). 15--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. de Alfaro, L., Henzinger, T.A., and Jhala, R. Compositional methods for probabilistic systems. In CONCUR01, LNCS 2154 (2001). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Degano, P. and Priami, C. Non-interleaving semantics of mobile processes. Theoretical Computer Science 216 1--2 (1999), 237--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Dematté, L., Priami, C., and Romanel, A. The BlenX language: A tutorial. In Formal Methods for Computational Systems Biology, LNCS 5016. Springer, 2008. 313--365. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Dematté, L., Priami, C., Romanel, A. The Beta Workbench: A tool to study the dynamics of biological systems. Briefings in Bioinformatics, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  17. Denning, P.J. Great principles of computing. Commun. ACM 46, 11 (Nov. 2003), 15--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Denning, P.J. Is computer science science? Commun. ACM 48, 4 (Apr. 2005), 27--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Denning, P.J. Recentering computer science. Commun. ACM 48, 11 (Nov. 2005), 15--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Denning, P.J. Computing is a natural science. Commun. ACM 50, 5 (July 2007), 13--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Dijstra, E.W. Programming as a discipline of mathematical nature. American Mathematical Monthly 81 (1974), 608--612.Google ScholarGoogle ScholarCross RefCross Ref
  22. Fisher, J. and Henzinger, T. Executable cell biology. Nature Biotechnology 25 (2007), 1239--1249.Google ScholarGoogle ScholarCross RefCross Ref
  23. Forrest, S. and Beauchemin, C. Imm. Reviews 216 (2007), 176--197.Google ScholarGoogle ScholarCross RefCross Ref
  24. Foster, A.C., Church, G.M. Towards synthesis of a minimal cell. Molecular Systems Biology (2006).Google ScholarGoogle Scholar
  25. Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81 (1977), 2340--2361.Google ScholarGoogle ScholarCross RefCross Ref
  26. Goldbeter, A. Computational approaches to cellular rhythms. Nature 420 (2002), 238--245.Google ScholarGoogle ScholarCross RefCross Ref
  27. Gutowitz, H. Introduction (to cellular automata). Physica D 45, 1990.Google ScholarGoogle Scholar
  28. Harel, D. Statecharts in the making: A personal account. In Proceedings of the 3rd ACM SIGPLAN History of Programming Languages Conference, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Hendler, J., Shadbolt, N., Hall, W., Berners-Lee, T., and Weitzner, D. Web science: An interdisciplinary approach to understanding the Web. Comm. ACM 51,7 (July 2008), 60--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Hood, L., Galas, D. The digital code of DNA. Nature 421 (2003), 444--448.Google ScholarGoogle ScholarCross RefCross Ref
  31. Kitano, H. Systems biology: A brief overview. Science 295 (2002), 1662--1664.Google ScholarGoogle ScholarCross RefCross Ref
  32. Klawe, M. and Shneiderman, B. Crisis and opportunity in computer science. Commun. ACM 48,11 (Nov. 2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Knuth, D. Computer science and its relation to mathematics. American Mathematical Monthly 81 (1974), 323--343.Google ScholarGoogle ScholarCross RefCross Ref
  34. Kuwahara, H. and Mura, I. An efficient and exact stochastic simulation method to analyze rare events in biological systems. Journal of Chemical Physics 129. 2008.Google ScholarGoogle ScholarCross RefCross Ref
  35. Ludtke, N., Panzeri, S., Brown, M., Broornhead, D.S., Knowles, J., Montemurro M.A., and Kell, D.B. Information-theoretic sensitivity analysis: A general method for credit assignment in complex networks. J. R. Soc Interface 5 (2008), 223--235.Google ScholarGoogle ScholarCross RefCross Ref
  36. Minsky, M. ACM Turing Lecture: Form and content in computer science. Journal of the ACM 17, 2 (1970), 197--215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Nature insight: Computational biology. Nature 420 (2002), 206--251.Google ScholarGoogle ScholarCross RefCross Ref
  38. Nurse, P. Life, logic and information. Nature 454 (2008), 424--426.Google ScholarGoogle ScholarCross RefCross Ref
  39. Nussbaum, D. and Agarwal, A. Scalability of parallel machines. Commun. ACM 34, 3 (Mar. 1991), 57--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. O'Malley, M. and Dupré, J. Fundamental issues in systems biology. BioEssays, 27 (2005), 1270--1276.Google ScholarGoogle ScholarCross RefCross Ref
  41. Palsson, B.O. Systems Biology: Properties of Reconstructed Networks, Cambridge University Press. 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Priami, C. and Quaglia, P. Modeling the dynamics of biosystems. Briefings in Bioinformatics 5 (2004), 259--269.Google ScholarGoogle ScholarCross RefCross Ref
  43. Priami, C., Regev, A., Shapiro, E., and Silvermann, W. Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters 80 (2001), 25--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Rao, C.V., Wolf, D.M., and Arkin, A.P. Control, exploitation and tolerance of intracellular noise. Nature 420 (2002), 231--237.Google ScholarGoogle ScholarCross RefCross Ref
  45. Rapin, N., Kesmir, C., Frankild, S., Nielsen, M., Lundegaard, C., Brunak, S., and Lund, O. Modeling the human immune system by combining bioinformatics and systems biology approaches. Journal Biol. Phys. 32 (2006), 335--353.Google ScholarGoogle ScholarCross RefCross Ref
  46. Regev, A. and Shapiro, E. Cells as computation. Nature 419 (2002), 343.Google ScholarGoogle ScholarCross RefCross Ref
  47. Roos, D. Bioinformatics--- Trying to swim in a sea of data. Science 291 (2001), 260--1261.Google ScholarGoogle ScholarCross RefCross Ref
  48. Searls, D. The language of genes. Nature 420 (2002), 211--217.Google ScholarGoogle ScholarCross RefCross Ref
  49. Spengler, S.J. Bioinformatics in the information age. Science 287 (2000), 1221--1223.Google ScholarGoogle ScholarCross RefCross Ref
  50. Teuscher, C. Biologically uninspired computer science. Commun. ACM 49, 11 (Nov. 2006), 27--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Volterra, V. Fluctuations in the abundance of species considered mathematically. Nature 118 (1926). 558--560.Google ScholarGoogle Scholar
  52. Welch, P.H. and Barnes, F.R.M. Communicating mobile processes: Introducing occam-pi. In CSP25, LNCS 3525. Springer, 2005, 175--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Wing, J. Computational thinking. Commun. ACM 49, 3 Mar. 2006), 33--35. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Algorithmic systems biology

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image Communications of the ACM
      Communications of the ACM  Volume 52, Issue 5
      Security in the Browser
      May 2009
      132 pages
      ISSN:0001-0782
      EISSN:1557-7317
      DOI:10.1145/1506409
      Issue’s Table of Contents

      Copyright © 2009 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 May 2009

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Popular
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format