skip to main content
10.1145/1507149.1507165acmconferencesArticle/Chapter ViewAbstractPublication Pagesi3dConference Proceedingsconference-collections
research-article

Real-time fluid simulation using discrete sine/cosine transforms

Published:27 February 2009Publication History

ABSTRACT

Recent advances in fluid simulations have yielded exceptionally realistic imagery. However, most algorithms have computational requirements that are prohibitive for real-time simulations. Using Fourier based solutions mitigates this issue, although due to wraparound, boundary conditions are not naturally available, leading to inconsistencies near the boundary. We show that slip boundary conditions can be imposed by solving the mass conservation step using cosine and sine transforms instead of the Fourier transform. Further, we show that measures against density dissipation can be computed using cosine transforms and we describe a new method to compute surface tension in the same domain. This combination of related algorithms leads to real-time simulations with boundary conditions.

Skip Supplemental Material Section

Supplemental Material

p99-long.mov

mov

62.1 MB

References

  1. Anderson, J. D. 1995. Computational fluid dynamics: The basics with applications. McGraw-Hill, New York, NY.Google ScholarGoogle Scholar
  2. Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Transactions on Graphics 26, 3, 100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bessonov, O., Brailovskaya, V., Polezhaev, V., and Roux, B. 1995. Parallelization of the solution of 3d navier-stokes equations for fluid flow in a cavity with moving covers. In PaCT '95: Proc. of the 3rd International Conference on Parallel Computing Technologies, 385--399. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Boyd, J. 1999. Chebyshev and Fourier spectral methods, 2rd ed. Dover Publications, Mineola, NY.Google ScholarGoogle Scholar
  5. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: Animating the interplay between rigid bodies and fluid. ACM Transactions on Graphics 23, 3, 377--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Denis, B., Côté, J., and Laprise, R. 2001. Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using the discrete cosine transform (DCT). Monthly Weather Review 130, 1812--1829.Google ScholarGoogle ScholarCross RefCross Ref
  7. Dupont, T. F., and Liu, Y. 2003. Back and forth error compensation and correction methods for removing errors introduced by uneven gradients of the level set function. Journal of Computational Physics 190, 1, 311--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Durand, F., and Dorsey, J. 2002. Fast bilateral filtering for the display of high-dynamic-range images. ACM Transactions on Graphics 23, 3, 257--266. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Transactions on Graphics 21, 3, 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Fattal, R., and Lischinski, D. 2004. Target-driven smoke animation. ACM Transactions on Graphics 23, 3, 441--448. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Fedkiw, R., Aslam, T., Merriman, B., and Osher, S. 1999. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). Journal of Computational Physics 152, 457--492. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Fedkiw, R., Stam, J., and Jensen, H. 2001. Visual simulation of smoke. In Proceedings of ACM SIGGRAPH '01, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Feldman, B. E., O'Brien, J. F., and Klingner, B. M. 2005. Animating gases with hybrid meshes. ACM Transactions on Graphics 24, 3, 904--909. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In Proceedings of ACM SIGGRAPH 2001, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Foster, N., and Metaxas, D. 1997. Modeling the motion of a hot, turbulent gas. In Proceedings of SIGGRAPH '97, 181--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Frigo, M., and Johnson, S. G. 2005. The design and implementation of FFTW3. Proceedings of the IEEE 93, 2, 216--231.Google ScholarGoogle ScholarCross RefCross Ref
  17. Frigo, M. 1999. A fast fourier transform compiler. In ACM SIGPLAN'99 Conference on Programming Language Design and Implementation (PLDI), 169--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Géneveaux, O., Habibi, A., and Dischler, J.-M. 2003. Simulating fluid-solid interaction. In Graphics Interface, 31--38.Google ScholarGoogle Scholar
  19. Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Non-convex rigid bodies with stacking. ACM Transactions on Graphics 22, 3, 871--878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Guermond, J.-L., and Quartapelle, L. 2000. A projection FEM for variable density incompressible flows. J. Comput. Phys. 165, 1, 167--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Hockney, R. W. 1965. A fast direct solution of poisson's equation using fourier analysis. J. ACM 12, 1, 95--113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ihrke, I., Ziegler, G., Tevs, A., Theobalt, C., Magnor, M., and Seidel, H.-P. 2007. Eikonal rendering: Efficient light transport in refractive optics. ACM Transactions on Graphics 26, 3, 59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Irving, G., Guendelman, E., Losasso, F., and Fedkiw, R. 2006. Efficient simulation of large bodies of water by coupling two and three dimensional techniques. ACM Transactions on Graphics 25, 3, 805--811. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kayija, J. T., and von Herzen, B. 1984. Ray tracing volume densities. Proc. of ACM SIGGRAPH 1984 18, 3, 165--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kim, B. M., Liu, Y., Llamas, I., and Rosignac, J. 2005. Flowfixer: Using BFECC for fluid simulation. In Eurographics Workshop on Natural Phenomena, 51--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Klingner, B. M., Feldman, B. E., Chentanez, N., and O'Brien, J. F. 2006. Fluid animation with dynamic meshes. ACM Transactions on Graphics 25, 3, 820--825. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lamorlette, A., and Foster, N. 2002. Structural modeling of natural flames. ACM Transactions on Graphics 21, 3, 729--735. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Losasso, F., Shinar, T., and Selle, A. 2006. Multiple interacting fluids. ACM Transactions on Graphics 25, 3, 812--819. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Makhoul, J. 1980. A fast cosine transform in one and two dimensions. IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP-28, 1, 27--34.Google ScholarGoogle ScholarCross RefCross Ref
  30. Martucci, S. A. 1994. Symmetric convolution and the discrete sine and cosine transforms. IEEE Transactions on Signal Processing 42, 5, 1038--1051.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Nguyen, D., Fedkiw, R., and Jensen, H. 2002. Physically-based modeling and animation of fire. ACM Transactions on Graphics 29, 3, 721--728. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Reeves, R., and Kubik, K. 2006. Shift, scaling and derivative properties of the discrete cosine transform. Signal Processing 86, 1597--1603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Transactions on Graphics 24, 3, 910--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Selle, A., Fedkiw, R., Kim, B. M., Liu, Y., and Rossignac, J. 2007. An unconditionally stable MacCormack method. Journal of Scientific Computing, in review. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Shao, X., and Johnson, S. G. 2008. Type-II/III DCT/DST algorithms with reduced number of arithmetic operations. Signal Processing 88, 6, 1553--1564. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Stam, J. 1999. Stable fluids. In Proceedings of ACM SIGGRAPH, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Stam, J. 2001. A simple fluid solver based on the FFT. Journal of Graphics Tools 6, 2, 43--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Stavroudis, O. N. 1972. The Optics of Rays, Wavefronts and Caustics. Academic Press, New York.Google ScholarGoogle Scholar
  39. Strang, G. 1988. Linear algebra and its applications, 3rd ed. Harcourt College Publishers, Fort Worth.Google ScholarGoogle Scholar
  40. Strang, G. 1999. The discrete cosine transform. SIAM Review 41, 1, 135--147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. ACM Transactions on Graphics 25, 3, 826--834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Yokokawa, M., Itakura, K., Uno, A., Ishihara, T., and Kaneda, Y. 2002. 16.4-Tflops direct numerical simulation of turbulence by a Fourier spectral method on the Earth Simulator. In Supercomputing '02: Proceedings of the 2002 ACM/IEEE Conf. on Supercomputing, 1--17. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Real-time fluid simulation using discrete sine/cosine transforms

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          I3D '09: Proceedings of the 2009 symposium on Interactive 3D graphics and games
          February 2009
          253 pages
          ISBN:9781605584294
          DOI:10.1145/1507149

          Copyright © 2009 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 February 2009

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate148of485submissions,31%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader