skip to main content
research-article

Numerical coarsening of inhomogeneous elastic materials

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

We propose an approach for efficiently simulating elastic objects made of non-homogeneous, non-isotropic materials. Based on recent developments in homogenization theory, a methodology is introduced to approximate a deformable object made of arbitrary fine structures of various linear elastic materials with a dynamicallysimilar coarse model. This numerical coarsening of the material properties allows for simulation of fine, heterogeneous structures on very coarse grids while capturing the proper dynamics of the original dynamical system, thus saving orders of magnitude in computational time. Examples including inhomogeneous and/or anisotropic materials can be realistically simulated in realtime with a numerically-coarsened model made of a few mesh elements.

Skip Supplemental Material Section

Supplemental Material

tps068_09.mp4

mp4

43.3 MB

References

  1. An, S., Kim, T., and James, D. L. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM Transactions on Graphics (SIGGRAPH Asia) 27, 4 (Dec.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Babuška, I., and Sauter, S. A. 2008. Efficient solution of anisotropic lattice equations by the recovery method. SIAM J. Sci. Comput. 30, 5, 2386--2404. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Baraff, D., and Witkin, A. P. 1998. Large steps in cloth simulation. In ACM SIGGRAPH Proceedings, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barbic, J., and James, D. 2005. Real-Time Subspace Integration for St. Venant-Kirchhoff Deformable Models. ACM Trans. on Graphics 24, 3 (Aug.), 982--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Barr, A. H. 1989. The Einstein Summation Notation: Introduction and Extensions. ACM SIGGRAPH Course Notes #30 "Topics in Physically-based Modeling", J1--J12.Google ScholarGoogle Scholar
  6. Bensoussan, A., Lions, J. L., and Papanicolaou, G. 1978. Asymptotic analysis for periodic structure. North Holland, Amsterdam.Google ScholarGoogle Scholar
  7. Berlyand, L., and Owhadi, H. 2009. Finite dimensional approximation of solutions of divergence form systems of equations with rough and high contrast coefficients. To appear.Google ScholarGoogle Scholar
  8. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. Interactive skeleton-driven dynamic deformations. ACM SIGGRAPH 21, 3 (July), 586--593. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. A multiresolution framework for dynamic deformations. In Symposium on Computer Animation, 41--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Choi, M.-G., and Ko, H.-S. 2005. Modal warping: Real-time simulation of large rotational deformation. IEEE Trans. on Visualization and Computer Graphics 11, 1, 91--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. De Veubeke, B. F. 1976. The dynamics of flexible bodies. International Journal of Engineering Science 14, 895--913.Google ScholarGoogle ScholarCross RefCross Ref
  12. Debunne, G., Desbrun, M., Cani, M.-P., and Barr, A. H. 2001. Dynamic real-time deformations using space & time adaptive sampling. In ACM SIGGRAPH Proceedings, 31--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Farmer, C. L. 2002. Upscaling: a review. International Journal for Numerical Methods in Fluids 40, 1--2, 63--78.Google ScholarGoogle ScholarCross RefCross Ref
  14. Feynman, R., Leighton, R., and Sands, M. 2006. The Feynman Lectures on Physics. Addison-Wesley.Google ScholarGoogle Scholar
  15. Georgii, J., and Westermann, R. 2008. Corotated finite elements made fast and stable. In Proceedings of the 5th Workshop on Virtual Reality Interaction and Physical Simulation.Google ScholarGoogle Scholar
  16. Grinspun, E., Krysl, P., and Schröder, P. 2002. Charms: A simple framework for adaptive simulation. ACM Transactions on Graphics 21, 3 (July), 281--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hauth, M., and Strasser, W. 2004. Corotational simulation of deformable solids. In Winter School on Computer Graphics, 137--144.Google ScholarGoogle Scholar
  18. James, D. L., and Fatahalian, K. 2003. Precomputing interactive dynamic deformable scenes. ACM Transactions on Graphics 22, 3 (July), 879--887. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. James, D. L., and Pai, D. K. 1999. ArtDefo: Accurate real time deformable objects. In ACM SIGGRAPH Proceedings, 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. James, D. L., and Pai, D. K. 2002. DyRT: Dynamic response textures for real time deformation simulation with graphics hardware. ACM Trans. on Graphics 21, 3 (July), 582--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jikov, V. V., Kozlov, S. M., and Oleinik, O. A. 1991. Homogenization of Differential Operators and Integral Functionals. Springer-Verlag.Google ScholarGoogle Scholar
  22. Krysl, P., Lall, S., and Marsden, J. 2000. Dimensional Model Reduction in Non-linear Finite Element Dynamics of Solids and Structures. I.J.N.M.E. 51, 479--504.Google ScholarGoogle Scholar
  23. Li, R.-C., and Bai, Z. 2005. Structure preserving model reduction using a Krylov subspace projection formulation. Comm. Math. Sci. 3, 2, 179--199.Google ScholarGoogle ScholarCross RefCross Ref
  24. Müller, M., and Gross, M. 2004. Interactive virtual materials. In Proceedings of Graphics Interface, 239--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In Proceedings of the Symposium on Computer Animation, 49--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Nesme, M., Payan, Y., and Faure, F. 2006. Animating shapes at arbitrary resolution with non-uniform stiffness. In Eurographics Workshop in Virtual Reality Interaction and Physical Simulation (VRIPHYS).Google ScholarGoogle Scholar
  27. Nesme, M., Kry, P. G., Jeřábková, L., and Faure, F. 2009. Preserving topology and elasticity for embedded deformable models. ACM Trans. on Graphics 28, 3 (Aug.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Owhadi, H., and Zhang, L. 2007. Metric-based upscaling. Communications on Pure and Applied Math. 60, 675--723.Google ScholarGoogle ScholarCross RefCross Ref
  29. Pentland, A., and Williams, J. 1989. Good vibrations: modal dynamics for graphics and animation. In ACM SIGGRAPH Proceedings, 215--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Rivers, A. R., and James, D. L. 2007. Fastlsm: Fast lattice shape matching for robust real-time deformation. ACM Trans. on Graphics 26, 3 (July), 82:1--82:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Shu, S., Babuška, I., Xiao, Y., Xu, J., and Zikatanov, L. 2008. Multilevel preconditioning methods for discrete models of lattice block materials. SIAM Journal on Scientific Computing 31, 1, 687--707. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. ACM Trans. on Graphics 25, 3 (July), 826--834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. on Graphics 27(3), 47 (Aug.). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Numerical coarsening of inhomogeneous elastic materials

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Transactions on Graphics
                ACM Transactions on Graphics  Volume 28, Issue 3
                August 2009
                750 pages
                ISSN:0730-0301
                EISSN:1557-7368
                DOI:10.1145/1531326
                Issue’s Table of Contents

                Copyright © 2009 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 27 July 2009
                Published in tog Volume 28, Issue 3

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader