skip to main content
article

Semantics of Multimodal Network Models

Published:01 April 2009Publication History
Skip Abstract Section

Abstract

A multimodal network (MMN) is a novel graph-theoretic formalism designed to capture the structure of biological networks and to represent relationships derived from multiple biological databases. MMNs generalize the standard notions of graphs and hypergraphs, which are the bases of current diagrammatic representations of biological phenomena, and incorporate the concept of mode. Each vertex of an MMN is a biological entity, a biot, while each modal hyperedge is a typed relationship, where the type is given by the mode of the hyperedge. The semantics of each modal hyperedge e is given through denotational semantics, where a valuation function f_{e} defines the relationship among the values of the vertices incident on e. The meaning of an MMN is denoted in terms of the semantics of a hyperedge sequence. A companion paper defines MMNs and concentrates on the structural aspects of MMNs. This paper develops MMN denotational semantics when used as a representation of the semantics of biological networks and discusses applications of MMNs in managing complex biological data.

References

  1. L.S. Heath and A.A. Sioson, "Multimodal Networks: Structure and Operations," IEEE/ACM Trans. Computational Biology and Bioninformatics, vol. 6, no. 2, pp. 321-332, Apr.-June 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. P. Smolen, D.A. Baxter, and J.H. Byrne, "Modeling Transcriptional Control in Gene Networks--Methods, Recent Results, and Future Directions," Bull. Math. Biology, vol. 62, pp. 247-292, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  3. L.S. Heath, "Networks in Bioinformatics," Proc. Int'l Symp. Parallel Architectures, Algorithms, and Networks (ISPAN '02), pp. 141-150, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. K.W. Kohn, "Molecular Interaction Maps as Information Organizers and Simulation Guides," Chaos, vol. 11, no. 1, pp. 84-97, Dec. 2001.Google ScholarGoogle ScholarCross RefCross Ref
  5. I. Pirson, N. Fortemaison, C. Jacobs, S. Dremier, J.E. Dumont, and C. Maenhaut, "The Visual Display of Regulatory Information and Networks," Trends in Cell Biology, vol. 10, pp. 404-408, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  6. R. Maimon and S. Browning, "Diagrammatic Notation and Computational Structure of Gene Networks," Proc. Second Int'l Conf. Systems Biology (CSB '01), Nov. 2001.Google ScholarGoogle Scholar
  7. D.L. Cook, J. Farley, and S.J. Tapscott, "A Basis for a Visual Language for Describing, Archiving and Analyzing Functional Models of Complex Biological Systems," Genome Biology, vol. 2, no. 4, pp. 0012.1-0012.10, Mar. 2001.Google ScholarGoogle Scholar
  8. H. Kitano, "A Graphical Notation for Biochemical Networks," BioSilico, vol. 1, no. 5, pp. 169-176, Nov. 2003.Google ScholarGoogle ScholarCross RefCross Ref
  9. H. Kitano, A. Funahashi, Y. Matsuoka, and K. Oda, "Using Process Diagrams for the Graphical Representation of Biological Networks," Nature Biotechnology, vol. 23, no. 8, pp. 961-966, Aug. 2005.Google ScholarGoogle ScholarCross RefCross Ref
  10. J. Gollub, C.A. Ball, G. Binkley, J. Demeter, D.B. Finkelstein, J.M. Hebert, T. Hernandez-Boussard, H. Jin, M. Kaloper, J.C. Matese, M. Schroeder, P.O. Brown, D. Botstein, and G. Sherlock, "The Stanford Microarray Database: Data Access and Quality Assessment Tools," Nucleic Acids Research, vol. 31, no. 1, pp. 94-96, Jan. 2003.Google ScholarGoogle ScholarCross RefCross Ref
  11. A.A. Sioson, J.I. Watkinson, C. Vasquez-Robinet, M. Ellis, M. Shukla, D. Kumar, N. Ramakrishnan, L.S. Heath, R. Grene, B.I. Chevone, K. Kadafar, and L.T. Watson, "Expresso and Chips: Creating a Next Generation Microarray Experiment Management System," Proc. 17th Int'l Parallel and Distributed Processing Symp. (IPDPS '03), Next Generation Software Systems Workshop, p. 209b, Apr. 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. Goto, T. Nishioka, and M. Kanehisa, "LIGAND: Chemical Database for Enzyme Reactions," Bioinformatics, vol. 14, no. 7, pp. 591-599, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  13. S. Goto, Y. Okuno, M. Hattor, T. Nishioka, and M. Kanehisa, "LIGAND: Database of Chemical Compounds and Reactions in Biological Pathways," Nucleic Acids Research, vol. 30, pp. 402-404, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  14. M.Y. Galperin, "The Molecular Biology Database Collection: 2007 Update," Nucleic Acids Research, vol. 35, pp. D3-D4, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  15. O. Thimm, O. Blasing, Y. Gibon, A. Nagel, S. Meyer, P. Kruger, J. Selbig, L.A. Muller, S.Y. Rhee, and M. Stitt, "MAPMAN: A User-Driven Tool to Display Genomics Data Sets onto Diagrams of Metabolic Pathways and Other Biological Processes," Plant J., vol. 37, pp. 914-939, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  16. B. Usadel, A. Nagel, O. Thimm, H. Redestig, O.E. Blaesing, N. Palacios-Rojas, J. Selbig, J. Hannemann, M. Conceicao, D. Steinhauser, W.-R. Scheible, Y. Gibon, R. Morcuende, D. Weicht, S. Meyer, and M. Stitt, "Extension of the Visualization Tool MAPMAN to Allow Statistical Analysis of Arrays, Display of Corresponding Genes, and Comparison with Known Responses," Plant Physiology, vol. 138, pp. 1195-1204, July 2005.Google ScholarGoogle ScholarCross RefCross Ref
  17. Gene Ontology Consortium, "The Gene Ontology (GO) Database and Informatics Resource," Nucleic Acids Research, vol. 32, pp. D258-D261, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  18. M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinsky, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin, and G. Sherlock, "Gene Ontology: Tool for the Unification of Biology," Nature Genetics, vol. 25, pp. 25-29, May 2000.Google ScholarGoogle ScholarCross RefCross Ref
  19. M. Hucka, A. Finney, H.M. Sauro, H. Bolouri, J.C. Doyle, H. Kitano, B.J.B.A.P. Arkin, D. Bray, A. Cornish-Bowden, A.A. Cuellar, S. Dronov, E.D. Gilles, M. Ginkel, V. Gor, I.I. Goryanin, W.J. Hedley, T.C. Hodgman, J.-H. Hofmeyr, P.J. Hunter, N.S. Juty, J.L. Kasberger, A. Kremling, U. Kummer, N. Le Novere, L.M. Loew, D. Lucio, P. Mendes, E. Minch, E.D. Mjolsness, Y. Nakayama, M.R. Nelson, P.F. Nielsen, T. Sakurada, J.C. Schaff, B.E. Shapiro, T.S. Shimizu, H.D. Spence, J. Stelling, K. Takahashi, M. Tomita, J. Wagner, and J. Wang, "The Systems Biology Markup Language (SBML): A Medium for Representation and Exchange of Biochemical Network Models," Bioinformatics, vol. 19, no. 14, pp. 524-531, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  20. C.A. Ball, I.A. Awad, J. Demeter, J. Gollub, J.M. Hebert, T. Hernandez-Boussard, H. Jin, J.C. Matese, M. Nitzberg, F. Wymore, Z.K. Zachariah, P.O. Brown, and G. Sherlock, "The Stanford Microarray Database Accommodates Additional Microarray Platforms and Data Formats," Nucleic Acids Research, vol. 33, no. 1, pp. D580-D582, Jan. 2005.Google ScholarGoogle Scholar
  21. L. Allison, A Practical Introduction to Denotational Semantics. Cambridge Univ. Press, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M.P. Fiore, A. Jung, E. Moggi, P. O'Hearn, J. Riecke, G. Rosolini, and I. Stark, "Domains and Denotational Semantics: History, Accomplishments and Open Problems," Bull. European Assoc. for Theoretical Computer Science, vol. 59, pp. 227-256, June 1996.Google ScholarGoogle Scholar
  23. R.D. Tennent, "The Denotational Semantics of Programming Languages," Comm. ACM, vol. 19, no. 8, pp. 437-453, Aug. 1976. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A.A. Sioson, "Multimodal Networks in Biology," Dept. of Computer Science, Virginia Tech, Nov. 2005.Google ScholarGoogle Scholar
  25. M. Stonebraker and G. Kemnitz, "The POSTGRES Next-Generation Database Management System," Comm. ACM, vol. 34, pp. 78- 92, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J.C. Reynolds, Theories of Programming Languages. Cambridge Univ. Press, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. Xanthoudakis and D.W. Nicholson, "Heat-Shock Proteins as Death Determinants," Nature Cell Biology, vol. 2, pp. E163-E165, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  28. J.-M. Bruey, C. Ducasse, P. Bonniaud, L. Ravagnan, S.A. Susin, C. Diaz-Latoud, S. Gurbuxani, A.-P. Arrigo, G. Kroemer, E. Solary, and C. Garrido, "HSP27 Negatively Regulates Cell Death by Interacting with Cytochrome c," Nature Cell Biology, vol. 2, pp. 645-652, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  29. A. Saleh, S.M. Srinivasula, L. Balkir, and P.D. Robbins, "Negative Regulation of the Apaf-1 Apoptosome by Hsp70," Nature Cell Biology, vol. 2, pp. 476-483, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  30. H.M. Beere, B.B. Wolf, K. Cain, D.D. Mosser, A. Mahboubi, T. Kuwana, P. Tailor, R.I. Morimoto, and G.M. Cohen, "Heat-Shock Protein 70 Inhibits Apoptosis by Preventing Recruitment of Procaspase-9 to the Apaf-1 Apoptosome," Nature Cell Biology, vol. 2, pp. 469-475, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  31. M.K. Campbell and S.O. Farrell, Biochemistry, fourth ed. Thomson Brooks/Cole, 2005.Google ScholarGoogle Scholar
  32. W.H. Elliott and D.C. Elliott, Biochemistry and Molecular Biology. Oxford Univ. Press, 1997.Google ScholarGoogle Scholar

Index Terms

  1. Semantics of Multimodal Network Models

                Recommendations

                Comments

                Login options

                Check if you have access through your login credentials or your institution to get full access on this article.

                Sign in

                Full Access

                PDF Format

                View or Download as a PDF file.

                PDF

                eReader

                View online with eReader.

                eReader