skip to main content
10.1145/1553374.1553475acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmlConference Proceedingsconference-collections
research-article

Unsupervised hierarchical modeling of locomotion styles

Published:14 June 2009Publication History

ABSTRACT

This paper describes an unsupervised learning technique for modeling human locomotion styles, such as distinct related activities (e.g. running and striding) or variations of the same motion performed by different subjects. Modeling motion styles requires identifying the common structure in the motions and detecting style-specific characteristics. We propose an algorithm that learns a hierarchical model of styles from unlabeled motion capture data by exploiting the cyclic property of human locomotion. We assume that sequences with the same style contain locomotion cycles generated by noisy, temporally warped versions of a single latent cycle. We model these style-specific latent cycles as random variables drawn from a common "parent" cycle distribution, representing the structure shared by all motions. Given these hierarchical priors, the algorithm learns, in a completely unsupervised fashion, temporally aligned latent cycle distributions, each modeling a specific locomotion style, and computes for each example the style label posterior distribution, the segmentation into cycles, and the temporal warping with respect to the latent cycles. We demonstrate the flexibility of the model on several application problems such as style clustering, animation, style blending, and filling in of missing data.

References

  1. Brand, M., & Hertzmann, A. (2000). Style machines. Proc. of SIGGRAPH (pp. 183--192). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Chiappa, S., Kober, J., & Peters, J. (2009). Using bayesian dynamical systems for motion template libraries. In Adv. in Neural Inform. Proc. Systems 21, 297--304.Google ScholarGoogle Scholar
  3. Elgammal, A. M., & Lee, C.-S. (2004). Separating style and content on a nonlinear manifold. Proc. of Comp. Vision Pattern Recogn. (pp. 478--485).Google ScholarGoogle ScholarCross RefCross Ref
  4. Grochow, K., Martin, S. L., Hertzmann, A., & Popovićć, Z. (2004). Style-based inverse kinematics. ACM Trans. on Graphics, 23, 522--531. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Jordan, M. I., Ghahramani, Z., Jaakkola, T., & Saul, L. K. (1999). An introduction to variational methods for graphical models. Machine Learning, 37, 183--233. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Kovar, L., Gleicher, M., & Pighin, F. (2002). Motion graphs. ACM Trans. on Graphics, 21, 473--482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Li, Y., Wang, T., & Shum, H.-Y. (2002). Motion texture: A two-level statistical model for character motion synthesis. ACM Trans. on Graphics, 21, 465--472. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Listgarten, J., Neal, R. M., Roweis, S. T., & Emili, A. (2005). Multiple alignment of continuous time series. In Adv. in Neural Inform. Proc. Systems 17, 817--824.Google ScholarGoogle Scholar
  9. Listgarten, J., Neal, R. M., Roweis, S. T., Puckrin, R., & Cutler, S. (2007). Bayesian detection of infrequent differences in sets of time series with shared structure. In Adv. in Neural Inform. Proc. Systems 19, 905--912.Google ScholarGoogle Scholar
  10. Liu, K., Hertzmann, A., & Popovic, Z. (2005). Learning physics-based motion style with nonlinear inverse optimization. ACM Trans. on Graphics, 24, 1071--1081. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ormoneit, D., Black, M., Hastie, T., & Kjellströöm, H. (2005). Representing cyclic human motion using functional analysis. Image and Vision Comp., 1264--1276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Rabiner, L. R. (1989). A tutorial on HMMs and selected applications in speech recognition. Proc. IEEE, 77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Rose, C., Cohen, M., & Bodenheimer, B. (1998). Verbs and adverbs: multidimensional motion interpolation. IEEE Computer Graphics and Application, 18, 32--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Taylor, G. W., Hinton, G. E., & Roweis, S. T. (2007). Modeling human motion using binary latent variables. In Adv. in Neural Inform. Proc. Systems 19, 1345--1352.Google ScholarGoogle Scholar
  15. Torresani, L., Hackney, P., & Bregler, C. (2007). Learning motion style synthesis from perceptual observations. In Adv. in Neural Inform. Proc. Systems 19, 1393--1400.Google ScholarGoogle Scholar
  16. Urtasun, R., Fleet, D. J., Geiger, A., Popovic, J., Darrell, T., & Lawrence, N. D. (2008). Topologically-constrained latent variable models. Proc. Int. Conf. Machine Learning (pp. 1080--1087). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Wang, J. M., Fleet, D. J., & Hertzmann, A. (2007). Multi-factor gaussian process models for style-content separation. Proc. Int. Conf. Machine Learning (pp. 975--982). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Unsupervised hierarchical modeling of locomotion styles

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Other conferences
              ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning
              June 2009
              1331 pages
              ISBN:9781605585161
              DOI:10.1145/1553374

              Copyright © 2009 Copyright 2009 by the author(s)/owner(s).

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 14 June 2009

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

              Acceptance Rates

              Overall Acceptance Rate140of548submissions,26%

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader