skip to main content
10.1145/1576702.1576724acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Multihomogeneous resultant formulae for systems with scaled support

Published: 28 July 2009 Publication History

Abstract

Constructive methods for matrices of multihomogeneous resultants for unmixed systems have been studied in [7, 13, 15]. We generalize these constructions to mixed systems, whose Newton polytopes are scaled copies of one polytope, thus taking a step towards systems with arbitrary supports. First, we specify matrices whose determinant equals the resultant and characterize the systems that admit such formulae. Bézout-type determinantal formulae do not exist, but we describe all possible Sylvester-type and hybrid formulae. We establish tight bounds for the corresponding degree vectors, as well as precise domains where these concentrate; the latter are new even for the unmixed case. Second, we make use of multiplication tables and strong duality theory to specify resultant matrices explicitly, in the general case. The encountered matrices are classified; these include a new type of Sylvester-type matrix as well as Bézout-type matrices, which we call partial Bezoutians. Our public-domain Maple implementation includes efficient storage of complexes in memory, and construction of resultant matrices.

References

[1]
A. Awane, A. Chkiriba, and M. Goze. Formes d'inertie et complexe de Koszul associés à des polynômes plurihomogènes. Revista Matematica Complutense, 18(1):243--260, 2005.
[2]
R. Bott. Homogeneous vector bundles. Annals of Math., 66:203--248, 1957.
[3]
E. Chionh, R. Goldman, and M. Zhang. Hybrid Dixon resultants. In R. Cripps, editor, Proc. 8th IMA Conf. Math. of Surfaces, pp. 193--212, 1998.
[4]
D. Cox and E. Materov. Tate resolutions for Segre embeddings. Algebra & Num. Theory, 2(5):523--550, 2008.
[5]
C. D'Andrea and A. Dickenstein. Explicit formulas for the multivariate resultant. J. Pure Appl. Algebra, 164(1-2):59--86, 2001.
[6]
C. D'Andrea and I. Z. Emiris. Hybrid sparse resultant matrices for bivariate systems. In Proc. ACM ISSAC '01, pp. 24--31. ACM Press, 2001.
[7]
A. Dickenstein and I. Z. Emiris. Multihomogeneous resultant formulae by means of complexes. J. Symb. Comput., 36(3-4):317--342, 2003.
[8]
M. Elkadi, A. Galligo, and T. H. Lê. Parametrized surfaces in P3 of bidegree (1,2). In Proc. ACM ISSAC '04, pp. 141--148. ACM Press, 2004.
[9]
I. Gelfand, M. Kapranov, and A. Zelevinsky. Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Boston, 1994.
[10]
G. Jeronimo and J. Sabia. Computing multihomogeneous resultants using straight-line programs. J. Symb. Comput., 42(1-2):218--235, 2007.
[11]
J. P. Jouanolou. An explicit duality for quasi-homogeneous ideals. J. Symb. Comput., 44(7):864--871, 2009.
[12]
H. Schenck, D. Cox, and A. Dickenstein. A case study in bigraded commutative algebra, In Syzygies & Hilbert Functions, vol. 254, Lec. Notes Pure & App.Math, pp.67--112, 2007.
[13]
B. Sturmfels and A. Zelevinsky. Multigraded resultants of Sylvester type. J. of Algebra, 163(1):115--127, 1994.
[14]
J. Weyman. Calculating discriminants by higher direct images. Trans. AMS., 343(1):367--389, 1994.
[15]
J. Weyman and A. Zelevinsky. Multigraded formulae for multigraded resultants. J. Alg. Geom., 3(4):569--597, 1994.

Cited By

View all
  • (2016)Compact Formulae in Sparse EliminationProceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2930889.2930943(1-4)Online publication date: 20-Jul-2016
  • (2014)Algebraic Algorithms*Computing Handbook, Third Edition10.1201/b16812-13(1-30)Online publication date: 8-May-2014

Index Terms

  1. Multihomogeneous resultant formulae for systems with scaled support

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ISSAC '09: Proceedings of the 2009 international symposium on Symbolic and algebraic computation
    July 2009
    402 pages
    ISBN:9781605586090
    DOI:10.1145/1576702
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 28 July 2009

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. bézout
    2. determinantal formula
    3. maple implementation
    4. multihomogeneous system
    5. resultant matrix
    6. sylvester

    Qualifiers

    • Research-article

    Conference

    ISSAC '09
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 01 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2016)Compact Formulae in Sparse EliminationProceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2930889.2930943(1-4)Online publication date: 20-Jul-2016
    • (2014)Algebraic Algorithms*Computing Handbook, Third Edition10.1201/b16812-13(1-30)Online publication date: 8-May-2014

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media