skip to main content
10.1145/1576702.1576730acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Schemes for deterministic polynomial factoring

Published:28 July 2009Publication History

ABSTRACT

In this work we relate the deterministic complexity of factoring polynomials (over finite fields) to certain combinatorial objects, we call m-schemes, that are generalizations of permutation groups. We design a new generalization of the known conditional deterministic subexponential time polynomial factoring algorithm to get an underlying m-scheme. We then demonstrate how progress in understanding m-schemes relate to improvements in the deterministic complexity of factoring polynomials, assuming the Generalized Riemann Hypothesis (GRH).

In particular, we give the first deterministic polynomial time algorithm (assuming GRH) to find a nontrivial factor of a polynomial of prime degree n where (n-1) is a constant-smooth number. We use a structural theorem about association schemes on a prime number of points, which Hanaki and Uno (2006) proved by representation theory methods.

References

  1. L. Adleman, K. Manders, and G. Miller. On taking roots in finite fields. In Proc. 18th FOCS, pages 175--178, 1977. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. E. Bach, J. von zur Gathen, and H. W. Lenstra, Jr. Factoring polynomials over special finite fields. Finite Fields and Their Applications, 7:5--28, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. E. R. Berlekamp. Factoring polynomials over finite fields. Bell System Technical Journal, 46:1853--1859, 1967.Google ScholarGoogle ScholarCross RefCross Ref
  4. E. R. Berlekamp. Factoring polynomials over large finite fields. Math. Comp., 24:713--735, 1970.Google ScholarGoogle ScholarCross RefCross Ref
  5. J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables for graph identification. Combinatorica, 12:389--410, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  6. P. J. Cameron. Permutation Groups. LMS Student Text 45. Cambridge University Press, Cambridge, 1999.Google ScholarGoogle Scholar
  7. P. Camion. A deterministic algorithm for factorizing polynomials of Fq{x}. Ann. Discr. Math., 17:149--157, 1983.Google ScholarGoogle Scholar
  8. D. G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over finite fields. Mathematics of Computation, 36(154):587--592, 1981.Google ScholarGoogle ScholarCross RefCross Ref
  9. Q. Cheng and M. A. Huang. Factoring polynominals over finite fields and stable colorings of tournaments. In ANTS, pages 233--246, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. S. A. Evdokimov. Factorization of a solvable polynomial over finite fields and the Generalized Riemann Hypothesis. Zapiski Nauchnyck Seminarov LOMI, 176:104--117, 1989.Google ScholarGoogle Scholar
  11. S. A. Evdokimov. Factorization of polynomials over finite fields in subexponential time under GRH. In Proc. 1st ANTS, pages 209--219. Lecture Notes In Computer Science 877, Springer-Verlag, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. Gao. On the deterministic complexity of factoring polynomials. J. of Symbolic Computation, 31(1-2):19--36, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Hanaki and K. Uno. Algebraic structure of association schemes of prime order. J. Algebraic. Combin., 23:189--195, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. A. Huang. Generalized Riemann Hypothesis and factoring polynomials over finite fields. J. Algorithms, 12:464--481, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. E. Kaltofen and V. Shoup. Subquadratic-time factoring of polynomials over finite fields. Math. Comp., 67:1179--1197, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. Mignotte and C.-P. Schnorr. Calcul d´eterministe des racines d'un polynôme dans un corps fini. Comptes Rendus Académie des Sciences (Paris), 306:467--472, 1988.Google ScholarGoogle Scholar
  17. I. Miyamoto. A computation of some multiply homogeneous superschemes from transitive permutation groups. In ISSAC '07: Proceedings of the International Symposium on Symbolic and Algebraic Computation, pages 293--298, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. R. T. Moenck. On the efficiency of algorithms for polynomial factoring. Math. Comp., 31:235--250, 1977.Google ScholarGoogle ScholarCross RefCross Ref
  19. M. O. Rabin. Probabilistic algorithms in finite fields. SIAM J. Comput, 9:273--280, 1980.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. L. Rónyai. Factoring polynomials over finite fields. Journal of Algorithms, 9:391--400, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. L. Rónyai. Factoring polynomials modulo special primes. Combinatorica, 9:199--206, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  22. L. Rónyai. Galois groups and factoring polynomials over finite fields. SIAM J. on Discrete Mathematics, 5:345--365, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. C. Saha. Factoring polynomials over finite fields using balance test. In STACS, pages 609--620, 2008.Google ScholarGoogle Scholar
  24. A. Seress. The minimal base size of primitive solvable permutation groups. J. London Math. Soc., 53:243--255, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  25. J. D. H. Smith. Association schemes, superschemes, and relations invariant under permutation groups. European J. Combin., 15(3):285--291, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. von zur Gathen. Factoring polynomials and primitive elements for special primes. Theoretical Computer Science, 52:77--89, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoring polynomials. Comput. Complexity, 2:187--224, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  28. J. Wojdy lo. An inextensible association scheme associated with a 4-regular graph. Graphs and Combinatorics, 17(1):185--192, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  29. H. Zassenhaus. On Hensel factorization, I. J. Number Theory, 1:291--311, 1969.Google ScholarGoogle ScholarCross RefCross Ref
  30. P.-H. Zieschang. Theory of Association Schemes. Springer, Berlin, 2005.Google ScholarGoogle Scholar

Index Terms

  1. Schemes for deterministic polynomial factoring

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          ISSAC '09: Proceedings of the 2009 international symposium on Symbolic and algebraic computation
          July 2009
          402 pages
          ISBN:9781605586090
          DOI:10.1145/1576702

          Copyright © 2009 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 28 July 2009

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate395of838submissions,47%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader