skip to main content
10.1145/1576702.1576751acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

The number of decomposable univariate polynomials. extended abstract

Published:28 July 2009Publication History

ABSTRACT

A univariate polynomial f over a field is decomposable if it is the composition f = gh of two polynomials g and h whose degree is at least 2. We determine an approximation to the number of decomposable polynomials over a finite field. The tame case, where the field characteristic p does not divide the degree n of f, is reasonably well understood, and we obtain exponentially decreasing error bounds.

The wild case, where p divides n, is more challenging and our error bounds are weaker. A centerpiece of our approach is a decomposition algorithm in the wild case, which shows that sufficiently many polynomials are decomposable.

References

  1. Antonia W. Bluher (2004). On xq+1 + ax + b. Finite Fields and Their Applications 10(3), 285--305. URL http://dx.doi.org/10.1016/j.ffa.2003.08.004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Arnaud Bodin, Pierre Dèbes & Salah Najib (2009). Indecomposable polynomials and their spectrum. Acta Arithmetica (2009), to appear.Google ScholarGoogle Scholar
  3. Martin Fürer (2007). Fast Integer Multiplication. In Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing, San Diego, California, USA, 57--66. ACM. URL http://dx.doi.org/10.1145/1250790.1250800. Preprint available at: URL http://www.cse.psu.edu/~furer/Papers/mult.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Joachim von zur Gathen (1990a). Functional Decomposition of Polynomials: the Tame Case. Journal of Symbolic Computation 9, 281--299. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Joachim von zur Gathen (1990b). Functional Decomposition of Polynomials: the Wild Case. Journal of Symbolic Computation 10, 437--452. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Joachim von zur Gathen (2002). Factorization and Decomposition of Polynomials. In The Concise Handbook of Algebra, Alexander V. Mikhalev & Güünter F. Pilz, editors, 159--161. Kluwer Academic Publishers. ISBN 0-7923-7072-4.Google ScholarGoogle Scholar
  7. Joachim von zur Gathen (2008a). Counting reducible and singular bivariate polynomials. Finite Fields and Their Applications 18(4), 944--978. Extended abstract in Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation ISSAC2007, Waterloo, Ontario, Canada (2007), 369--376. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Joachim von zur Gathen (2008b). Counting decomposable multivariate polynomials. Preprint, 21 pages. URL http://arxiv.org/abs/0811.4726.Google ScholarGoogle Scholar
  9. Joachim von zur Gathen (2008c). Counting decomposable univariate polynomials. Preprint, 84 pages. URL http://arxiv.org/abs/0901.0054.Google ScholarGoogle Scholar
  10. Joachim von zur Gathen & Jüürgen Gerhard (2003). Modern Computer Algebra. Cambridge University Press, Cambridge, UK, 2nd edition. ISBN 0-521-82646-2, 800 pages. URL http://cosec.bit.uni-bonn.de/science/mca.html. First edition 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Joachim von zur Gathen, Mark Giesbrecht & Konstantin Ziegler (2009a). Collisions of polynomial compositions. In preparation.Google ScholarGoogle Scholar
  12. Joachim von zur Gathen, Dexter Kozen & Susan Landau (1987). Functional Decomposition of Polynomials. In Proceedings of the 28th Annual IEEE Symposium on Foundations of Computer Science, Los Angeles CA, 127--131. IEEE Computer Society Press, Washington DC. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Joachim von zur Gathen, Alfredo Viola & Konstantin Ziegler (2009). Exact counting of reducible multivariate polynomials. In preparation.Google ScholarGoogle Scholar
  14. Mark William Giesbrecht (1988). Complexity Results on the Functional Decomposition of Polynomials. Technical Report 209/88, University of Toronto, Department of Computer Science, Toronto, Ontario, Canada.Google ScholarGoogle Scholar
  15. Johannes Grabmeier, Erich Kaltofen & Volker Weispfenning (editors) (2003). Computer Algebra Handbook. Springer-Verlag, Berlin. ISBN 3-540-65466-6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Jaime Gutierrez & Dexter Kozen (2003). Polynomial Decomposition, section 2.2.4 (pages 26--28) in Grabmeier et al. (2003). Springer.Google ScholarGoogle Scholar
  17. Jaime Gutierrez & David Sevilla (2006). On Ritt's decomposition theorem in the case of finite fields. Finite Fields and Their Applications 12(3), 403--412. URL http://dx.doi.org/10.1016/j.ffa.2005.08.004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. D. Kozen & S. Landau (1986). Polynomial Decomposition Algorithms. Technical Report 86-773, Department of Computer Science, Cornell University, Ithaca NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Dexter Kozen & Susan Landau (1989). Polynomial Decomposition Algorithms. Journal of Symbolic Computation 7, 445--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Dexter Kozen, Susan Landau & Richard Zippel (1996). Decomposition of Algebraic Functions. Journal of Symbolic Computation 22, 235--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Beniamino Segre (1964). Arithmetische Eigenschaften von Galois-Räumen, I. Mathematische Annalen 154, 195--256. URL http://dx.doi.org/10.1007/BF01362097.Google ScholarGoogle ScholarCross RefCross Ref
  22. Daqing Wan (1990). Permutation Polynomials and Resolution of Singularities over Finite Fields. Proceedings of the American Mathematical Society 110(2), 303--309. ISSN 0002-9939. URL http://www.jstor.org/journals/00029939.html.Google ScholarGoogle ScholarCross RefCross Ref
  23. U. Zannier (1993). Ritt's Second Theorem in arbitrary characteristic. Journal für die reine und angewandte Mathematik 445, 175--203.Google ScholarGoogle Scholar

Index Terms

  1. The number of decomposable univariate polynomials. extended abstract

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            ISSAC '09: Proceedings of the 2009 international symposium on Symbolic and algebraic computation
            July 2009
            402 pages
            ISBN:9781605586090
            DOI:10.1145/1576702

            Copyright © 2009 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 28 July 2009

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            Overall Acceptance Rate395of838submissions,47%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader