skip to main content
article
Free Access

The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs

Published:01 December 2009Publication History
Skip Abstract Section

Abstract

Recent methods for estimating sparse undirected graphs for real-valued data in high dimensional problems rely heavily on the assumption of normality. We show how to use a semiparametric Gaussian copula---or "nonparanormal"---for high dimensional inference. Just as additive models extend linear models by replacing linear functions with a set of one-dimensional smooth functions, the nonparanormal extends the normal by transforming the variables by smooth functions. We derive a method for estimating the nonparanormal, study the method's theoretical properties, and show that it works well in many examples.

References

  1. Felix Abramovich, Yoav Benjamini, David L. Donoho, and Iain M. Johnstone. Adapting to unknown sparsity by controlling the false discovery rate. The Annals of Statistics, 34(2):584-653, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  2. Onureena Banerjee, Laurent El Ghaoui, and Alexandre d'Aspremont. Model selection through sparse maximum likelihood estimation. Journal of Machine Learning Research, 9:485-516, March 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Tony Cai, Cun-Hui Zhang, and Harrison H. Zhou. Optimal rates of convergence for covariance matrix estimation. Technical report, Wharton School, Statistics Department, University of Pennsylvania, 2008.Google ScholarGoogle Scholar
  4. Mathias Drton and Michael D. Perlman. Multiple testing and error control in Gaussian graphical model selection. Statistical Science, 22(3):430-449, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  5. Mathias Drton and Michael D. Perlman. A SINful approach to Gaussian graphical model selection. Journal of Statistical Planning and Inference, 138(4):1179-1200, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  6. Jerome H. Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432-441, 2007.Google ScholarGoogle Scholar
  7. Trevor Hastie and Robert Tibshirani. Generalized additive models. Chapman & Hall Ltd., 1999.Google ScholarGoogle Scholar
  8. Chris A. J. Klaassen and Jon A. Wellner. Efficient estimation in the bivariate normal copula model: Normal margins are least-favorable. Bernoulli, 3(1):55-77, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  9. Colin L. Mallows, editor. The collected works of John W. Tukey. Volume VI: More mathematical, 1938-1984. Wadsworth & Brooks/Cole, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  10. Nicolai Meinshausen and Peter Bühlmann. High dimensional graphs and variable selection with the Lasso. The Annals of Statistics, 34:1436-1462, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  11. Pradeep Ravikumar, Han Liu, John Lafferty, and Larry Wasserman. SpAM: Sparse additive models. In Advances in Neural Information Processing Systems 20, pages 1201-1208. MIT Press, Cambridge, MA, 2008.Google ScholarGoogle Scholar
  12. Pradeep Ravikumar, John Lafferty, Han Liu, and Larry Wasserman. Sparse additive models. Journal of the Royal Statistical Society, Series B, Methodological, 2009a. To appear.Google ScholarGoogle ScholarCross RefCross Ref
  13. Pradeep Ravikumar, Martin Wainwright, Garvesh Raskutti, and Bin Yu. Model selection in Gaussian graphical models: High-dimensional consistency of l 1-regularized MLE. In Advances in Neural Information Processing Systems 22, Cambridge, MA, 2009b. MIT Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Adam J. Rothman, Peter J. Bickel, Elizaveta Levina, and Ji Zhu. Sparse permutation invariant covariance estimation. Electronic Journal of Statistics, 2:494-515, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  15. Abe Sklar. Fonctions de répartition à n dimensions et leurs marges. Publications de l'Institut de Statistique de L'Université de Paris 8, pages 229-231, 1959.Google ScholarGoogle Scholar
  16. Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, Methodological, 58:267-288, 1996.Google ScholarGoogle Scholar
  17. Hideatsu Tsukahara. Semiparametric estimation in copula models. Canadian Journal of Statistics, 33:357-375, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  18. Aad W. van der Vaart. Asymptotic Statistics. Cambridge University Press, 1998.Google ScholarGoogle Scholar
  19. Aad W. van der Vaart and Jon A. Wellner. Weak Convergence and Empirical Processes: With Applications to Statistics. Springer-Verlag, 1996.Google ScholarGoogle Scholar
  20. AnjaWille et al. Sparse Gaussian graphical modelling of the isoprenoid gene network in Arabidopsis thaliana. Genome Biology, 5:R92, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  21. Ming Yuan and Yi Lin. Model selection and estimation in the Gaussian graphical model. Biometrika, 94(1):19-35, 2007.Google ScholarGoogle Scholar

Index Terms

  1. The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image The Journal of Machine Learning Research
      The Journal of Machine Learning Research  Volume 10, Issue
      12/1/2009
      2936 pages
      ISSN:1532-4435
      EISSN:1533-7928
      Issue’s Table of Contents

      Publisher

      JMLR.org

      Publication History

      • Published: 1 December 2009
      Published in jmlr Volume 10, Issue

      Qualifiers

      • article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader