skip to main content
research-article

User-assisted intrinsic images

Published:01 December 2009Publication History
Skip Abstract Section

Abstract

For many computational photography applications, the lighting and materials in the scene are critical pieces of information. We seek to obtain intrinsic images, which decompose a photo into the product of an illumination component that represents lighting effects and a reflectance component that is the color of the observed material. This is an under-constrained problem and automatic methods are challenged by complex natural images. We describe a new approach that enables users to guide an optimization with simple indications such as regions of constant reflectance or illumination. Based on a simple assumption on local reflectance distributions, we derive a new propagation energy that enables a closed form solution using linear least-squares. We achieve fast performance by introducing a novel downsampling that preserves local color distributions. We demonstrate intrinsic image decomposition on a variety of images and show applications.

Skip Supplemental Material Section

Supplemental Material

References

  1. Agrawal, A., Raskar, R., and Chellappa, R. 2006. Edge suppression by gradient field transformation using cross-projection tensors. In CVPR, 2301--2308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Barrow, H., and Tenenbaum, J. 1978. Recovering intrinsic scene characteristics from images. Computer Vision Systems.Google ScholarGoogle Scholar
  3. Briggs, W. L., Henson, V. E., and McCormick, S. F. 2000. A multigrid tutorial (2nd ed.). Society for Industrial and Applied Mathematics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Buatois, L., Caumon, G., and Lévy, B. 2007. Concurrent number cruncher: An efficient sparse linear solver on the gpu. In High Performance Computation Conference. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chuang, Y.-Y., Curless, B., Salesin, D. H., and Szeliski, R. 2001. A bayesian approach to digital matting. In CVPR.Google ScholarGoogle Scholar
  6. Fang, H., and Hart, J. C. 2004. Textureshop: Texture synthesis as a photograph editing tool. ACM TOG (proc. of SIGGRAPH 2004) 23, 3, 354--359. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Fattal, R. 2008. Single image dehazing. ACM TOG (proc. of SIGGRAPH 2008) 27, 3, 72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Finlayson, G. D., Hordley, S. D., and Drew, M. S. 2002. Removing shadows from images. In ECCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Finlayson, G. D., Drew, M. S., and Lu, C. 2004. Intrinsic images by entropy minimization. In ECCV, 582--595.Google ScholarGoogle Scholar
  10. Horn, B. K. 1986. Robot Vision. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hsu, E., Mertens, T., Paris, S., Avidan, S., and Durand, F. 2008. Light mixture estimation for spatially varying white balance. ACM TOG (proc. of SIGGRAPH 2008) 27, 3, 70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Khan, E., Reinhard, E., Fleming, R., and Bülthoff, H. 2005. Image-based material editing. ACM TOG (proc. of SIGGRAPH 2005) 24, 3, 654--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Land, E. H., and McCann, J. J. 1971. Lightness and retinex theory. Journal of the optical society of America 61, 1.Google ScholarGoogle ScholarCross RefCross Ref
  14. Levin, A., and Weiss, Y. 2007. User assisted separation of reflections from a single image using a sparsity prior. IEEE Trans. PAMI 29, 9, 1647--1654. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Levin, A., Lischinski, D., and Weiss, Y. 2004. Colorization using optimization. ACM TOG (proc. of SIGGRAPH 2004) 23, 689--694. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Levin, A., Lischinski, D., and Weiss, Y. 2008. A closed-form solution to natural image matting. IEEE Trans. PAMI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Liu, X., Wan, L., Qu, Y., Wong, T.-T., Lin, S., Leung, C.-S., and Heng, P.-A. 2008. Intrinsic colorization. ACM TOG (proc. of SIGGRAPH Asia 2008) 27, 5, 152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. McCann, J., and Pollard, N. S. 2008. Real-time gradient-domain painting. ACM TOG (Proc. of SIGGRAPH) 27, 3, 93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Mohan, A., Tumblin, J., and Choudhury, P. 2007. Editing soft shadows in a digital photograph. IEEE Computer Graphics and Applications 27, 2, 23--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Omer, I., and Werman, M. 2004. Color lines: Image specific color representation. In CVPR, 946--953. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Shen, L., Tan, P., and Lin, S. 2008. Intrinsic image decomposition with non-local texture cues. In CVPR.Google ScholarGoogle Scholar
  22. Shor, Y., and Lischinski, D. 2008. The shadow meets the mask: Pyramid-based shadow removal. Computer Graphics Forum (Proc. of Eurographics) 27, 3.Google ScholarGoogle ScholarCross RefCross Ref
  23. Sinha, P., and Adelson, E. 1993. Recovering reflectance and illumination in a world of painted polyhedra. In ICCV, 156--163.Google ScholarGoogle Scholar
  24. Tappen, M. F., Freeman, W. T., and Adelson, E. H. 2005. Recovering intrinsic images from a single image. IEEE Trans. PAMI 27, 9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Weiss, Y. 2001. Deriving intrinsic images from image sequences. In ICCV, 68--75.Google ScholarGoogle Scholar
  26. Wu, T.-P., Tang, C.-K., Brown, M. S., and Shum, H.-Y. 2007. Natural shadow matting. ACM TOG 26, 2, 8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Yu, Y., and Malik, J. 1998. Recovering photometric properties of architectural scenes from photographs. In ACM SIGGRAPH 98, 207--217. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. User-assisted intrinsic images

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader