skip to main content
10.5555/1632592.1632598acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
research-article

Real-time planning for parameterized human motion

Published: 07 July 2008 Publication History

Abstract

We present a novel approach to learn motion controllers for real-time character animation based on motion capture data. We employ a tree-based regression algorithm for reinforcement learning, which enables us to generate motions that require planning. This approach is more flexible and more robust than previous strategies. We also extend the learning framework to include parameterized motions and interpolation. This enables us to control the character more precisely with a small amount of motion data. Finally, we present results of our algorithm for three different types of controllers.

References

[1]
{AF02} Arikan O., Forsyth D. A.: Interactive motion generation from examples. In SIGGRAPH (2002), pp. 483--490.
[2]
{AFO03} Arikan O., Forsyth D. A., O'Brien J. F.: Motion synthesis from annotations. ACM Trans. Graph. 22, 3 (2003), 402--408.
[3]
{Bai95} Baird L. C.: Residual algorithms: Reinforcement learning with function approximation. In ICML (1995), pp. 30--37.
[4]
{CHP07} Cooper S., Hertzmann A., Popovic Z.: Active learning for real-time motion controllers. ACM Trans. Graph. 26, 3 (2007), 5.
[5]
{EGW05} Ernst D., Geurts P., Wehenkel L.: Tree-based batch mode reinforcement learning. Journal of Machine Learning Research 6 (2005), 503--556.
[6]
{GEW06} Geurts P., Ernst D., Wehenkel L.: Extremely randomized trees. Machine Learning 63, 1 (2006), 3--42.
[7]
{HG07} Heck R., Gleicher M.: Parametric motion graphs. In SI3D (2007), pp. 129--136.
[8]
{IAF05} Ikemoto L., Arikan O., Forsyth D.: Learning to move autonomously in a hostile world. In SIGGRAPH '05: ACM SIGGRAPH 2005 Sketches (2005), ACM, p. 46.
[9]
{KG03} Kovar L., Gleicher M.: Flexible automatic motion blending with registration curves, 2003.
[10]
{KG04} Kovar L., Gleicher M.: Automated extraction and parameterization of motions in large data sets. ACM Trans. Graph. 23, 3 (2004), 559--568.
[11]
{KGP02} Kovar L., Gleicher M., Pighin F. H.: Motion graphs. In SIGGRAPH (2002), pp. 473--482.
[12]
{KLM96} Kaelbling L. P., Littman M. L., Moore A. P.: Reinforcement learning: A survey. J. Artif. Intell. Res. (JAIR) 4 (1996), 237--285.
[13]
{KS05} Kwon T., Shin S. Y.: Motion modeling for online locomotion synthesis. In SCA '05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation (2005), ACM, pp. 29--38.
[14]
{LCL06} Lee K. H., Choi M. G., Lee J.: Motion patches: building blocks for virtual environments annotated with motion data. ACM Trans. Graph. 25, 3 (2006), 898--906.
[15]
{LK05} Lau M., Kuffner J. J.: Behavior planning for character animation. In SCA '05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation (2005), ACM, pp. 271--280.
[16]
{LL04} Lee J., Lee K. H.: Precomputing avatar behavior from human motion data. In SCA '04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation (2004), ACM Press, pp. 79--87.
[17]
{LL06} Lee J., Lee K. H.: Precomputing avatar behavior from human motion data. Graphical Models 68, 2 (2006), 158--174.
[18]
{MK05} Mukai T., Kuriyama S.: Geostatistical motion interpolation. ACM Trans. Graph. 24, 3 (2005), 1062--1070.
[19]
{MP07} McCann J., Pollard N. S.: Responsive characters from motion fragments. ACM Trans. Graph. 26, 3 (2007), 6.
[20]
{PSKS04} Park S. I., Shin H. J., Kim T.-H., Shin S. Y.: On-line motion blending for real-time locomotion generation. Journal of Visualization and Computer Animation 15, 3--4 (2004), 125--138.
[21]
{RCB98} Rose C., Cohen M. F., Bodenheimer B.: Verbs and adverbs: Multidimensional motion interpolation. IEEE Computer Graphics and Applications 18, 5 (1998), 32--41.
[22]
{SB98} Sutton R., Barto A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, 1998.
[23]
{SH05} Safonova A., Hodgins J. K.: Analyzing the physical correctness of interpolated human motion. In SCA '05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation (2005), ACM, pp. 171--180.
[24]
{SH07} Safonova A., Hodgins J. K.: Construction and optimal search of interpolated motion graphs. ACM Trans. Graph. 26, 3 (2007), 106.
[25]
{SKG05} Sung M., Kovar L., Gleicher M.: Fast and accurate goal-directed motion synthesis for crowds. In SCA '05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation (2005), ACM, pp. 291--300.
[26]
{SKY08} Shum H. P. H., Komura T., Yamazaki S.: Simulating interactions of avatars in high dimensional state space. In SI3D '08: Proceedings of the 2008 symposium on Interactive 3D graphics and games (2008), ACM, pp. 131--138.
[27]
{SO06} Shin H. J., Oh H. S.: Fat graphs: constructing an interactive character with continuous controls. In SCA '06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation (2006), Eurographics Association, pp. 291--298.
[28]
{TLP07} Treuille A., Lee Y., Popovic Z.: Near-optimal character animation with continuous control. ACM Trans. Graph. 26, 3 (2007), 7.
[29]
{WH97} Wiley D. J., Hahn J. K.: Interpolation synthesis of articulated figure motion. IEEE Computer Graphics and Applications 17, 6 (1997), 39--45.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SCA '08: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
July 2008
230 pages
ISBN:9783905674101

Sponsors

Publisher

Eurographics Association

Goslar, Germany

Publication History

Published: 07 July 2008

Check for updates

Qualifiers

  • Research-article

Conference

SCA08
Sponsor:

Acceptance Rates

SCA '08 Paper Acceptance Rate 24 of 60 submissions, 40%;
Overall Acceptance Rate 183 of 487 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Flexible Motion In-betweening with Diffusion ModelsACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657414(1-9)Online publication date: 13-Jul-2024
  • (2023)Neural Motion GraphSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618181(1-11)Online publication date: 10-Dec-2023
  • (2020)Learned motion matchingACM Transactions on Graphics10.1145/3386569.339244039:4(53:1-53:12)Online publication date: 12-Aug-2020
  • (2020)Character controllers using motion VAEsACM Transactions on Graphics10.1145/3386569.339242239:4(40:1-40:12)Online publication date: 12-Aug-2020
  • (2019)Learning Cooperative Personalized Policies from Gaze DataProceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology10.1145/3332165.3347933(197-208)Online publication date: 17-Oct-2019
  • (2019)Synthesis of biologically realistic human motion using joint torque actuationACM Transactions on Graphics10.1145/3306346.332296638:4(1-12)Online publication date: 12-Jul-2019
  • (2016)Repurposing hand animation for interactive applicationsProceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation10.5555/2982818.2982833(97-106)Online publication date: 11-Jul-2016
  • (2016)Task-based locomotionACM Transactions on Graphics10.1145/2897824.292589335:4(1-11)Online publication date: 11-Jul-2016
  • (2016)PrecisionProceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games10.1145/2856400.2856404(29-37)Online publication date: 27-Feb-2016
  • (2014)Generating and ranking diverse multi-character interactionsACM Transactions on Graphics10.1145/2661229.266127133:6(1-12)Online publication date: 19-Nov-2014
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media