skip to main content
10.5555/1632592.1632622acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
research-article

Interactive terrain modeling using hydraulic erosion

Published: 07 July 2008 Publication History

Abstract

We present a step toward interactive physics-based modeling of terrains. A terrain, composed of layers of materials, is edited with interactive modeling tools built upon different physics-based erosion and deposition algorithms. First, two hydraulic erosion algorithms for running water are coupled. Areas where the motion is slow become more eroded by the dissolution erosion, whereas in the areas with faster motion, the force-based erosion prevails. Second, when the water under-erodes certain areas, slippage takes effect and the river banks fall into the water. A variety of local and global editing operation is provided. The user has a great level of control over the process and receives immediate feedback since the GPU-based erosion simulation runs at least at 20 fps on off-the-shelf computers for scenes with grid resolution of 2048 x 1024 and four layers of material. We also present a divide and conquer approach to handle large terrain erosion, where the terrain is tiled, and each tile calculated independently on the GPU. We show a wide variety of erosion-based modeling features such as forming rivers, drying flooded areas, rain, interactive manipulation with rivers, spring, adding obstacles into the water, etc.

References

[1]
{ASA07} Anh N. H., Sourin A., Aswani P.: Physically based hydraulic erosion simulation on graphics processing unit. In Proc. of GRAPHITE '07 (2007).
[2]
{Ben07} Beneš B.: Real-time erosion using shallow water simulation. In VRIPHYS '07: Proc. of Workshop in Virtual Reality Interactions and Physical Simulation (2007).
[3]
{BF01} Beneš B., Forsbach R.: Layered data representation for visual simulation of terrain erosion. In SCCG '01: Proc. of the 17th Spring conference on Computer graphics (2001), p. 80.
[4]
{BF02} Beneš B., Forsbach R.: Visual simulation of hydraulic erosion. Journal of WSCG 10, 1 (2002).
[5]
{BFMF06} Bridson R., Fedkiw R., Muller-Fischer M.: Fluid simulation. In SIGGRAPH 2006 Course Notes #14 (2006).
[6]
{BSS06} Brosz J., Samavati F. F., Sousa M. C.: Terrain synthesis by-example. In Advances in Computer Graphics and Computer Vision (2006), pp. 122--133.
[7]
{BTHB06} Beneš B., Těšínský V., Hornyš J., Bhatia S. K.: Hydraulic erosion. Computer Animation and Virtual Worlds 17, 2 (2006), 99--108.
[8]
{CMF98} Chiba N., Muraoka K., Fujita K.: An erosion model based on velocity fields for the visual simulation of mountain scenery. The Journal of Visualization and Computer Animation 9, 4 (1998), 185--194.
[9]
{CXW*05} Chen Y., Xia L., Wong T.-T., Tong X., Bao H., Guo B., Shum H.-Y.: Visual simulation of weathering by γ-ton tracing. ACM Trans. Graph. 24, 3 (2005), 1127--1133.
[10]
{DEJP99} Dorsey J., Edelman A., Jensen H. W., Pedersen H. K.: Modeling and rendering of weathered stone. In Proc. of SIGGRAPH '99 (1999), pp. 225--234.
[11]
{DP07} DAZ-Production: Bryce 6. http://www.daz3d.com/i.x/software/bryce/, 2007.
[12]
{EMP*03} Ebert D. S., Musgrave F. K., Peachey D., Perlin K., Worley S.: Texturing and Modeling, 3rd ed. Academic Press, Inc., 2003.
[13]
{Fed03} Fedkiw R.: Simulating natural phenomena for computer graphics. In Geometric Level Set Methods in Imaging, Vision and Graphics. Springer Verlag, New York, 2003.
[14]
{GCD*98} Gascuel J.-D., Cani M.-P., Desbrun M., Leroy E., Mirgon C.: Simulating landslides for natural disaster prevention. In Eurographics Workshop on Computer Animation and Simulation (EGCAS) (1998).
[15]
{HW04} Holmberg N., Wünsche B. C.: Efficient modeling and rendering of turbulent water over natural terrain. In Proc. of GRAPHITE '04 (2004), pp. 15--22.
[16]
{KM90} Kass M., Miller G.: Rapid, stable fluid dynamics for computer graphics. In Proc. of SIGGRAPH '90 (1990).
[17]
{KMN88} Kelley A. D., Malin M. C., Nielson G. M.: Terrain simulation using a model of stream erosion. In Proc. of SIGGRAPH '88 (1988), pp. 263--268.
[18]
{Lew87} Lewis J. P.: Generalized stochastic subdivision. ACM Trans. Graph. 6, 3 (1987), 167--190.
[19]
{LKS*05} Lefohn A. E., Kniss J., Strzodka R., Sengupta S., Owens J. D.: Glift: Generic, efficient, random-access GPU data structures. In Proc. of SIGGRAPH '05 (2005).
[20]
{LM93} Li X., Moshell M.: Modeling soil: Real-time dynamic models for soil slippage and manipulation. In Proc. of SIGGRAPH '93 (1993), pp. 361--368.
[21]
{Man83} Mandelbrot B. B.: The Fractal Geometry of Nature. W. H. Freeman and Company, 1983.
[22]
{MDH07} Mei X., Decaudin P., Hu B.-G.: Fast hydraulic erosion simulation and visualization on GPU. In Proc. of Pacific Graphics (2007), pp. 47--56.
[23]
{MFC06} Maes M. M., Fujimoto T., Chiba N.: Efficient animation of water flow on irregular terrains. In Proc. of GRAPHITE '06 (2006), pp. 107--115.
[24]
{MKM89} Musgrave F. K., Kolb C. E., Mace R. S.: The synthesis and rendering of eroded fractal terrains. In Proc. of SIGGRAPH '89 (1989), pp. 41--50.
[25]
{Nag97} Nagashima K.: Computer generation of eroded valley and mountain terrains. The Visual Computer 13, 9--10 (1997).
[26]
{NWD05} Neidhold B., Wacker M., Deussen O.: Interactive physically based fluid and erosion simulation. In Proc. of Eurographics Workshop on Natural Phenomena (2005).
[27]
{OH95} O'Brien J. F., Hodgins J. K.: Dynamic simulation of splashing fluids. In Proc. of Computer Animation (1995).
[28]
{ON00} Onoue K., Nishita T.: A method for modeling and rendering dunes with wind-ripples. In Proc. of Pacific Graphics (2000), pp. 427--428.
[29]
{ON03} Onoue K., Nishita T.: Virtual sandbox. In Proc. of Pacific Graphics (2003), pp. 252--260.
[30]
{PH89} Perlin K., Hoffert E. M.: Hypertexture. In Proc. of SIGGRAPH '89 (1989), pp. 253--262.
[31]
{PH93} Prusinkiewicz P., Hammel M.: A fractal model of mountains with rivers. In Proc. of Graphics Interface (1993).
[32]
{PL90} Prusinkiewicz P., Lindenmayer A.: The Algorithmic Beauty of Plants. Springer-Verlag, 1990.
[33]
{RPP93} Roudier P., Peroche B., Perrin M.: Landscapes synthesis achieved through erosion and deposition process simulation. Comp. Graph. Forum 12, 3 (1993).
[34]
{ŠBK08} Štava O., Beneš B., Křivánek J.: Interactive hydraulic erosion on the GPU. In ShaderX7 -- Advanced Rendering Techniques (to appear) (2008), Charles River Media.
[35]
{SFK*07} Selle A., Fedkiw R., Kim B., Liu Y., Rossignac J.: An unconditionally stable MacCormack method. J. Sci. Comput. (2007).
[36]
{SOH99} Sumner R. W., O'Brien J. F., Hodgins J. K.: Animating sand, mud, and snow. Comp. Graph. Forum 18, 1 (1999).
[37]
{SS05} Stachniak S., Stuerzlinger W.: An algorithm for automated fractal terrain deformation. In Proc. of Computer Graphics and Artificial Intelligence (2005).
[38]
{Ter07} Terragen: Terragen. http://www.planetside.co.uk/terragen/, 2007.
[39]
{WCMT07} Wojtan C., Carlson M., Mucha P. J., Turk G.: Animating corrosion and erosion. In Eurographics Workshop on Natural Phenomena (2007).
[40]
{ZSTR07} Zhou H., Sun J., Turk G., Rehg J. M.: Terrain synthesis from digital elevation models. IEEE Trans. Visual. Comp. Graph. 13, 4 (2007), 834--848.

Cited By

View all
  • (2024)Unerosion: Simulating Terrain Evolution Back in TimeProceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation10.1111/cgf.15182(1-12)Online publication date: 21-Aug-2024
  • (2023)Real-world large-scale terrain model reconstruction and real-time renderingProceedings of the 28th International ACM Conference on 3D Web Technology10.1145/3611314.3615901(1-10)Online publication date: 9-Oct-2023
  • (2023)Real-time Height-field Simulation of Sand and Water MixturesSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618159(1-10)Online publication date: 10-Dec-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SCA '08: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
July 2008
230 pages
ISBN:9783905674101

Sponsors

Publisher

Eurographics Association

Goslar, Germany

Publication History

Published: 07 July 2008

Check for updates

Qualifiers

  • Research-article

Conference

SCA08
Sponsor:

Acceptance Rates

SCA '08 Paper Acceptance Rate 24 of 60 submissions, 40%;
Overall Acceptance Rate 183 of 487 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)24
  • Downloads (Last 6 weeks)2
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Unerosion: Simulating Terrain Evolution Back in TimeProceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation10.1111/cgf.15182(1-12)Online publication date: 21-Aug-2024
  • (2023)Real-world large-scale terrain model reconstruction and real-time renderingProceedings of the 28th International ACM Conference on 3D Web Technology10.1145/3611314.3615901(1-10)Online publication date: 9-Oct-2023
  • (2023)Real-time Height-field Simulation of Sand and Water MixturesSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618159(1-10)Online publication date: 10-Dec-2023
  • (2020)Making procedural water waves boundary-awareProceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation10.1111/cgf.14100(1-8)Online publication date: 6-Oct-2020
  • (2019)Procedural modeling of rivers from single image toward natural scene productionThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-017-1465-735:2(223-237)Online publication date: 1-Feb-2019
  • (2018)Real-time virtual pipes simulation and modeling for small-scale shallow waterProceedings of the 14th Workshop on Virtual Reality Interactions and Physical Simulations10.5555/3297697.3297703(45-54)Online publication date: 15-Apr-2018
  • (2018)Real-Time Sketch-Based Terrain GenerationProceedings of Computer Graphics International 201810.1145/3208159.3208184(13-18)Online publication date: 11-Jun-2018
  • (2017)Direct volume rendering of stack-based terrainsProceedings of the XXVII Spanish Computer Graphics Conference10.2312/ceig.20171207(41-50)Online publication date: 28-Jun-2017
  • (2017)Interactive example-based terrain authoring with conditional generative adversarial networksACM Transactions on Graphics10.1145/3130800.313080436:6(1-13)Online publication date: 20-Nov-2017
  • (2017)Feature-based volumetric terrain generationProceedings of the 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games10.1145/3023368.3023383(1-9)Online publication date: 25-Feb-2017
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media