skip to main content
10.5555/1632592.1632623acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
research-article

Density contrast SPH interfaces

Published: 07 July 2008 Publication History

Abstract

To simulate multiple fluids realistically many important interaction effects have to be captured accurately. Smoothed Particle Hydrodynamics (SPH) has shown to be a simple, yet flexible method to cope with many fluid simulation problems in a robust way. Unfortunately, the results obtained when using SPH to simulate miscible fluids are severely affected, especially if density ratios become large. The undesirable effects reach from unphysical density and pressure variations to spurious and unnatural interface tensions, as well as severe numerical instabilities. In this work, we present a formulation based on SPH which can handle density discontinuities at interfaces between multiple fluids correctly without increasing the computational costs compared to standard SPH. The basic idea is to replace the density computation in SPH by a measure of particle densities and consequently derive new formulations for pressure and viscous forces. The new method enables the user to select the desired amount of interface tension according to the simulation problem at hand. We succeed to stably simulate multiple fluids with high density contrasts without the above described artifacts apparent in standard SPH simulations.

References

[1]
{AMS*06} Agertz O., Moore B., Stadel J., Potter D., Miniati F., Read J., Mayer L., Gawryszczak A., Kravtsov A., Monaghan J., Nordlund A., Pearce F., Quilis V., Rudd D., Springel V., Stone J., Tasker E., Teyssier R., Wadsley J., Walder R.: Fundamental differences between sph and grid methods. Mon. Not. R. astr. Soc. astro-ph/0610051 (2006).
[2]
{Bat67} Batchelor G.: An introduction to fluid dynamics. Cambridge University Press, 1967.
[3]
{CFL67} Courant R., Friedrichs K., Lewy H.: On the partial difference equations of mathematical physics. IBM J. 11 (1967), 215--234.
[4]
{CL02} Colagrossi A., Landrini M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. Comput. Phys. 191 (2002), 448--475.
[5]
{DC96} Desbrun M., Cani M.-P.: Smoothed particles: A new paradigm for animating highly deformable bodies. In Eurographics Workshop on Computer Animation and Simulation (1996), pp. 61--76.
[6]
{GH04} Greenwood S. T., House D. H.: Better with bubbles: enhancing the visual realism of simulated fluid. In Symposium on Computer Animation (2004), pp. 287--296.
[7]
{HA06} Hu X. Y., Adams N. A.: A multi-phase sph method for macroscopic and mesoscopic flows. Comput. Phys. 213, 2 (2006), 844--861.
[8]
{HA07} Hu X. Y., Adams N. A.: An incompressible multi-phase sph method. J. Comput. Phys. 227, 1 (2007), 264--278.
[9]
{HK03} Hong J. M., Kim C. H.: Animation of bubbles in liquid. Computer Graphics Forum 22, 3 (2003), 253--262.
[10]
{HK05} Hong J. M., Kim C. H.: Discontinuous fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3 (2005), 915--920.
[11]
{Hoo98} Hoover W.: Isomorphism linking smooth particles and embedded atoms. Physics A 260 (1998), 244--254.
[12]
{KFL00} Kang M., Fedkiw R. P., Liu X.-D.: A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15, 3 (2000), 323--360.
[13]
{LSRS99} Lombardi J. C., Sills A., Rasio F. A., Shapiro S. L.: Tests of spurious transport in smoothed particle hydrodynamics. J. Comput. Phys. 152, 2 (1999), 687--735.
[14]
{LSSF06} Losasso F., Shinar T., Selle A., Fedkiw R.: Multiple interacting liquids. ACM Trans. Graph. (SIGGRAPH Proc.) 25, 3 (2006), 812--819.
[15]
{LTKF08} Losasso F., Talton J., Kwatra J., Fedkiw R.: Two-way coupled sph and particle level set fluid simulation. IEEE TVCG (2008), in press.
[16]
{MCG03} Müller M., Charypar D., Gross M.: Particle-based fluid simulation for interactive applications. In Symposium on Computer Animation (2003), pp. 154--159.
[17]
{Mon92} Monaghan J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Physics 30 (1992), 543.
[18]
{Mon94} Monaghan J.: Simulating free surface flows with sph. Comput. Phys. 110 (1994), 399--406.
[19]
{Mor00} Morris J. P.: Simulating surface tension with smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids 33 (2000), 333--353.
[20]
{MSKG05} Müller M., Solenthaler B., Keiser R., Gross M.: Particle-based fluid-fluid interaction. In Symposium on Computer Animation (2005), pp. 237--244.
[21]
{MUM*06} Mihalef V., Unlusu B., Metaxas D., Sussman M., Hussaini M. Y.: Physics based boiling simulation. In Symposium on Computer Animation (2006), pp. 317--324.
[22]
{MY06} Mao H., Yang Y.-H.: Particle-based immiscible fluid-fluid collision. In GI '06: Proceedings of Graphics Interface 2006 (2006), pp. 49--55.
[23]
{OS03} Ott F., Schnetter E.: A modified sph approach for fluids with large density differences, 2003.
[24]
{PSvdW03} Pelupessy F. I., Schaap W. E., van de Weygaert R.: Density estimators in particle hydrodynamics: Dtfe versus regular sph. Astronomy and Astrophysics 403 (2003), 389--398.
[25]
{PTB*03} Premoze S., Tasdizen T., Bigler J., Lefohn A., Whitaker R. T.: Particle-based simulation of fluids. In Proceedings of Eurographics (2003), pp. 401--410.
[26]
{SSP07} Solenthaler B., Schläfli J., Pajarola R.: A unified particle model for fluid-solid interactions. Journal of Computer Animation and Virtual Worlds 18, 1 (2007), 69--82.
[27]
{TM05} Tartakovsky A. M., Meakin P.: A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional rayleigh-taylor instability. Comput. Phys. 207, 2 (2005), 610--624.
[28]
{TSS*07} Thürey N., Sadlo F., Schirm S., Müller-Fischer M., Gross M.: Real-time simulations of bubbles and foam within a shallow water framework. In Symposium on Computer Animation (2007), pp. 191--198.
[29]
{ZYP06} Zheng W., Yong J.-H., Paul J.-C.: Simulation of bubbles. In Symposium on Computer Animation (2006), pp. 325--333.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SCA '08: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
July 2008
230 pages
ISBN:9783905674101

Sponsors

Publisher

Eurographics Association

Goslar, Germany

Publication History

Published: 07 July 2008

Check for updates

Qualifiers

  • Research-article

Conference

SCA08
Sponsor:

Acceptance Rates

SCA '08 Paper Acceptance Rate 24 of 60 submissions, 40%;
Overall Acceptance Rate 183 of 487 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)34
  • Downloads (Last 6 weeks)11
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Unified Pressure, Surface Tension and Friction for SPH FluidsACM Transactions on Graphics10.1145/370803444:1(1-28)Online publication date: 10-Dec-2024
  • (2020)A moving least square reproducing kernel particle method for unified multiphase continuum simulationACM Transactions on Graphics10.1145/3414685.341780939:6(1-15)Online publication date: 27-Nov-2020
  • (2020)Constraint bubbles and affine regionsACM Transactions on Graphics10.1145/3386569.339245539:4(43:1-43:15)Online publication date: 12-Aug-2020
  • (2019)Interlinked SPH Pressure Solvers for Strong Fluid-Rigid CouplingACM Transactions on Graphics10.1145/328498038:1(1-13)Online publication date: 19-Jan-2019
  • (2018)MLS pressure extrapolation for the boundary handling in divergence-free SPHProceedings of the 14th Workshop on Virtual Reality Interactions and Physical Simulations10.5555/3297697.3297704(55-63)Online publication date: 15-Apr-2018
  • (2018)Screen space particle selectionProceedings of the Conference on Computer Graphics & Visual Computing10.2312/cgvc.20181208(61-69)Online publication date: 13-Sep-2018
  • (2018)Simulation of bubbles with floating and rupturing effect for SPHSIGGRAPH Asia 2018 Posters10.1145/3283289.3283327(1-2)Online publication date: 4-Dec-2018
  • (2018)Pressure Boundaries for Implicit Incompressible SPHACM Transactions on Graphics10.1145/318048637:2(1-11)Online publication date: 28-Feb-2018
  • (2018)Physics-inspired approach to realistic and stable water spray with narrowband air particlesThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-017-1353-134:4(461-471)Online publication date: 1-Apr-2018
  • (2017)Approximate air-fluid interactions for SPHProceedings of the 13th Workshop on Virtual Reality Interactions and Physical Simulations10.2312/vriphys.20171081(29-38)Online publication date: 23-Apr-2017
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media