skip to main content
10.5555/1632592.1632624acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
research-article

Accurate viscous free surfaces for buckling, coiling, and rotating liquids

Published: 07 July 2008 Publication History

Abstract

We present a fully implicit Eulerian technique for simulating free surface viscous liquids which eliminates artifacts in previous approaches, efficiently supports variable viscosity, and allows the simulation of more compelling viscous behaviour than previously achieved in graphics. Our method exploits a variational principle which automatically enforces the complex boundary condition on the shear stress at the free surface, while giving rise to a simple discretization with a symmetric positive definite linear system. We demonstrate examples of our technique capturing realistic buckling, folding and coiling behavior. In addition, we explain how to handle domains whose boundary comprises both ghost fluid Dirichlet and variational Neumann parts, allowing correct behaviour at free surfaces and solid walls for both our viscous solve and the variational pressure projection of Batty et al. [BBB07].

References

[1]
{Bat67} Batchelor G. K.: An Introduction to Fluid Dynamics. Cambridge University Press, 1967.
[2]
{BBB07} Batty C., Bertails F., Bridson R.: A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. 26, 3 (2007), 100.
[3]
{Bej87} Bejan A.: Buckling flows: a new frontier in fluid mechanics. Annual Reviews of Heat Transfer 1 (1987), 262--304.
[4]
{BPL06} Bonito A., Picasso M., Laso M.: Numerical simulation of 3d viscoelastic flows with free surfaces. Journal of Computational Physics 215 (2006), 691--716.
[5]
{BWHT07} Bargteil A. W., Wojtan C., Hodgins J. K., Turk G.: A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3 (2007), 16.
[6]
{CBP05} Clavet S., Beaudoin P., Poulin P.: Particle-based viscoelastic fluid simulation. In Symposium on Computer Animation 2005 (2005), pp. 219--228.
[7]
{CM81} Cruikshank J. O., Munson B. R.: Viscous-fluid buckling of plane and axisymmetric jets. Journal of Fluid Mechanics 113 (1981), 221--239.
[8]
{CMVT02} Carlson M., Mucha P. J., Van Horn R., Turk G.: Melting and flowing. In SCA '02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation (2002), pp. 167--174.
[9]
{dSMN*04} de Sousa F. S., Mangiavacchi N., Nonato L. G., Castelo A., Tomé M. F., McKee S.: A front-tracking/front-capturing method for the simulation of 3d multi-fluid flows with free surfaces. Journal of Computational Physics 198 (2004).
[10]
{EMF02} Enright D., Marschner S., Fedkiw R.: Animation and rendering of complex water surfaces. ACM Trans. Graph. 21, 3 (2002), 736--744.
[11]
{ENGF03} Enright D., Nguyen D., Gibou F., Fedkiw R.: Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In 4th ASME JSME Joint Fluids Engineering Conference (2003).
[12]
{ETK*07} Elcott S., Tong Y., Kanso E., Schröder P., Desbrun M.: Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26, 1 (2007), 4.
[13]
{FM96} Foster N., Metaxas D.: Realistic animation of liquids. Graph. Models Image Process. 58, 5 (1996), 471--483.
[14]
{FR03} Fält H., Roble D.: Fluids with extreme viscosity. In SIGGRAPH '03: ACM SIGGRAPH 2003 Sketches&Applications (2003), pp. 1--1.
[15]
{GBO04} Goktekin T. G., Bargteil A. W., O'Brien J. F.: A method for animating viscoelastic fluids. ACM Trans. Graph. 23, 3 (2004), 463--468.
[16]
{HK05} Hong J.-M., Kim C.-H.: Discontinuous fluids. In SIGGRAPH '05: ACM SIGGRAPH 2005 Papers (2005), pp. 915--920.
[17]
{HP04} Hao Y., Prosperetti A.: A numerical method for three-dimensional gas-liquid flow computations. Journal of Computational Physics 196 (2004), 126--144.
[18]
{HS68} Hirt C. W., Shannon J. P.: Free surface stress conditions for incompressible-flow calculations. Journal of Computational Physics 2 (1968), 403--411.
[19]
{HW65} Harlow F., Welch J.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8 (1965), 2182--2189.
[20]
{ITF04} Irving G., Teran J., Fedkiw R.: Invertible finite elements for robust simulation of large deformation. In SCA '04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation (2004), pp. 131--140.
[21]
{KFL00} Kang M., Fedkiw R. P., Liu X.-D.: A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15, 3 (2000), 323--360.
[22]
{LGF04} Losasso F., Gibou F., Fedkiw R.: Simulating water and smoke with an octree data structure. In SIGGRAPH '04: ACM SIGGRAPH 2004 Papers (2004), pp. 457--462.
[23]
{LIRO07} Limache A., Idelsohn S., Rossi R., Onate E.: The violation of objectivity in laplace formulations of the navier-stokes equations. International Journal for Numerical Methods in Fluids 54, 6--8 (2007), 639--664.
[24]
{LSSF06} Losasso F., Shinar T., Selle A., Fedkiw R.: Multiple interacting liquids. In SIGGRAPH '06: ACM SIGGRAPH 2006 Papers (2006), pp. 812--819.
[25]
{MP89} Miller G., Pearce A.: Globular dynamics: A connected particle system for animating viscous fluids. Computers and Graphics 13, 3 (1989), 305--309.
[26]
{NH71} Nichols B. D., Hirt C. W.: Improved free surface boundary conditions for numerical incompressible-flow calculations. Journal of Computational Physics 8 (1971), 434--448.
[27]
{OCF*06} Oishi C. M., Cuminato J. A., Ferreira V. G., Tomé M. F., Castelo A., Mangiavacchi N., McKee S.: A stable semi-implicit method for free surface flows. Journal of Applied Mechanics 73 (2006), 940--947.
[28]
{OTCM08} Oishi C. M., Tomé M. F., Cuminato J. A., McKee S.: An implicit technique for solving 3d low reynolds number moving free surface flows. Journal of Computational Physics (in press) (2008).
[29]
{Pra71} Pracht W. E.: A numerical method for calculating transient creep flows. Journal of Computational Physics 7 (1971), 46--60.
[30]
{PZ02} Popinet S., Zaleski S.: Bubble collapse near a solid boundary: a numerical study of the influence of viscosity. Journal of Fluid Mechanics 464 (2002), 137--163.
[31]
{REN*04} Rasmussen N., Enright D., Nguyen D., Marino S., Sumner N., Geiger W., Hoon S., Fedkiw R.: Directable photorealistic liquids. In SCA '04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation (2004), pp. 193--202.
[32]
{RMH07} Rafiee A., Manzari M. T., Hosseini M.: An incompressible sph method for simulation of unsteady viscoelastic free surface flows. International Journal of Non-Linear Mechanics 42 (2007), 1210--1223.
[33]
{Rui07} Ruilova A.: Creating realistic cg honey. In SIGGRAPH '07: ACM SIGGRAPH 2007 posters (2007), p. 58.
[34]
{Sta99} Stam J.: Stable fluids. In SIGGRAPH '99: Proceedings of the 26th annual conference on Computer graphics and interactive techniques (1999), pp. 121--128.
[35]
{Tay68} Taylor G. I.: Instability of jets, threads, and sheets of viscous fluids. In Proc. Int. Cong. Appl. Mech. (1968).
[36]
{TFC*01} Tomé M., Filho A. C., Cuminato J. A., Mangiavacchi N., McKee S.: Gensmac3d: a numerical method for solving unsteady three-dimensional free surface flows. International Journal for Numerical Methods in Fluids 37 (2001), 747--796.
[37]
{Thu07} Thuerey N.: Physically Based Animation of Free Surface Flows with the Lattice Boltzmann Method. PhD thesis, University of Erlangen-Nuremberg, 2007.
[38]
{TM94} Tomé M., McKee S.: Gensmac: A computational marker and cell method for free surface flows in general domains. Journal of Computational Physics 110 (1994), 171--186.
[39]
{TM99} Tomé M., McKee S.: Numerical simulation of viscous flow: Buckling of planar jets. International Journal for Numerical Methods in Fluids 29 (1999), 705--718.
[40]
{TPF89} Terzopoulos D., Platt J., Fleischer K.: Heating and melting deformable models (from goop to glop). In Graphics Interface 1989 (1989), pp. 219--226.
[41]
{WT08} Wojtan C., Turk G.: Fast viscoelastic behavior with thin features. ACM Transactions on Graphics (Proc. SIGGRAPH) 27, 3 (2008).
[42]
{ZB05} Zhu Y., Bridson R.: Animating sand as a fluid. ACM Trans. Graph. 24, 3 (2005), 965--972.

Cited By

View all
  • (2024)An Induce-on-Boundary Magnetostatic Solver for Grid-Based FerrofluidsACM Transactions on Graphics10.1145/365812443:4(1-14)Online publication date: 19-Jul-2024
  • (2023)GARM-LS: A Gradient-Augmented Reference-Map Method for Level-Set Fluid SimulationACM Transactions on Graphics10.1145/361837742:6(1-20)Online publication date: 5-Dec-2023
  • (2023)Pahi: A Unified Water Pipeline and ToolsetProceedings of the 2023 Digital Production Symposium10.1145/3603521.3604291(1-13)Online publication date: 5-Aug-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SCA '08: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
July 2008
230 pages
ISBN:9783905674101

Sponsors

Publisher

Eurographics Association

Goslar, Germany

Publication History

Published: 07 July 2008

Check for updates

Qualifiers

  • Research-article

Conference

SCA08
Sponsor:

Acceptance Rates

SCA '08 Paper Acceptance Rate 24 of 60 submissions, 40%;
Overall Acceptance Rate 183 of 487 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)15
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)An Induce-on-Boundary Magnetostatic Solver for Grid-Based FerrofluidsACM Transactions on Graphics10.1145/365812443:4(1-14)Online publication date: 19-Jul-2024
  • (2023)GARM-LS: A Gradient-Augmented Reference-Map Method for Level-Set Fluid SimulationACM Transactions on Graphics10.1145/361837742:6(1-20)Online publication date: 5-Dec-2023
  • (2023)Pahi: A Unified Water Pipeline and ToolsetProceedings of the 2023 Digital Production Symposium10.1145/3603521.3604291(1-13)Online publication date: 5-Aug-2023
  • (2023)PolyStokes: A Polynomial Model Reduction Method for Viscous Fluid SimulationACM Transactions on Graphics10.1145/359214642:4(1-13)Online publication date: 26-Jul-2023
  • (2022)ElastoMonolithACM Transactions on Graphics10.1145/3550454.355547441:6(1-19)Online publication date: 30-Nov-2022
  • (2022)Efficient kinetic simulation of two-phase flowsACM Transactions on Graphics10.1145/3528223.353013241:4(1-17)Online publication date: 22-Jul-2022
  • (2021)A unified second-order accurate in time MPM formulation for simulating viscoelastic liquids with phase changeACM Transactions on Graphics10.1145/3450626.345982040:4(1-18)Online publication date: 19-Jul-2021
  • (2021)Locking-Proof TetrahedraACM Transactions on Graphics10.1145/344494940:2(1-17)Online publication date: 21-Apr-2021
  • (2020)MonolithACM Transactions on Graphics10.1145/3414685.341779839:6(1-16)Online publication date: 27-Nov-2020
  • (2020)Codimensional surface tension flow using moving-least-squares particlesACM Transactions on Graphics10.1145/3386569.339248739:4(42:1-42:14)Online publication date: 12-Aug-2020
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media