skip to main content
10.1145/1661412.1618484acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Partial intrinsic reflectional symmetry of 3D shapes

Published:01 December 2009Publication History

ABSTRACT

While many 3D objects exhibit various forms of global symmetries, prominent intrinsic symmetries which exist only on parts of an object are also well recognized. Such partial symmetries are often seen as more natural than a global one, even when the symmetric parts are under complex pose. We introduce an algorithm to extract partial intrinsic reflectional symmetries (PIRS) of a 3D shape. Given a closed 2-manifold mesh, we develop a voting scheme to obtain an intrinsic reflectional symmetry axis (IRSA) transform, which is a scalar field over the mesh that accentuates prominent IRSAs of the shape. We then extract a set of explicit IRSA curves on the shape based on a refined measure of local reflectional symmetry support along a curve. The iterative refinement procedure combines IRSA-induced region growing and region-constrained symmetry support refinement to improve accuracy and address potential issues arising from rotational symmetries in the shape. We show how the extracted IRSA curves can be incorporated into a conventional mesh segmentation scheme so that the implied symmetry cues can be utilized to obtain more meaningful results. We also demonstrate the use of IRSA curves for symmetry-driven part repair.

References

  1. Atallah, M. J. 1985. On symmetry detection. IEEE Trans. Comput. 34, 7, 663--666. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bokeloh, M., Berner, A., Wand, M., Seidel, H.-P., and Schilling, A. 2009. Symmetry detection using line features. Computer Graphics Forum (Special Issue of Eurographics) 28, 2, 697--706.Google ScholarGoogle ScholarCross RefCross Ref
  3. Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2006. Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching. Proc. National Academy of Sciences (PNAS) 103, 5, 1168--1172.Google ScholarGoogle ScholarCross RefCross Ref
  4. Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2007. Calculus of non-rigid surfaces for geometry and texture manipulation. IEEE Trans. Vis.&Comp. Graphics 13, 5, 902--913. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bronstein, A. M., Bronstein, M. M., Bruckstein, A. M., and Kimmel, R. 2009. Partial similarity of objects, or how to compare a centaur to a horse. Int. J. Comp. Vis. 84, 2, 163--183. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chaouch, M., and Verroust-Blondet, A. 2008. A novel method for alignment of 3D models. Proc. IEEE Int. Conf. on Shape Modeling and Applications, 187--195.Google ScholarGoogle Scholar
  7. Chen, X., Golovinskiy, A., and Funkhouser, T. 2009. A benchmark for 3D mesh segmentation. ACM Trans. on Graph 28, 3, 73:1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Elad, A., and Kimmel, R. 2001. Bending invariant representations for surfaces. Proc. IEEE Conf. on Comp. Vis. and Pat. Rec., 168--174.Google ScholarGoogle Scholar
  9. Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. of Int. Conf. on Knowledge Discovery and Data Mining, 226--231.Google ScholarGoogle Scholar
  10. Gal, R., and Cohen-Or, D. 2006. Salient geometric features for partial shape matching and similarity. ACM Trans. on Graph 25, 1, 130--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gatzke, T., Grimm, C., Garland, M., and Zelinka, S. 2005. Curvature maps for local shape comparison. Proc. IEEE Int. Conf. on Shape Modeling and Applications, 246--255. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Golovinskiy, A., Podolak, J., and Funkhouser, T. 2007. Symmetry-aware mesh processing. Princeton University TR-782-07.Google ScholarGoogle Scholar
  13. Hoffman, D. D., and Richards, W. A. 1984. Parts of recognition. Cognition 18, 65--96.Google ScholarGoogle ScholarCross RefCross Ref
  14. Hoffman, D. D., and Singh, M. 1997. Salience of visual parts. Cognition 63, 1, 29--78.Google ScholarGoogle ScholarCross RefCross Ref
  15. Kazhdan, M., Chazelle, B., Dobkin, D., Finkelstein, A., and Funkhouser, T. 2002. A reflective symmetry descriptor. Proc. Euro. Conf. on Comp. Vis. 2, 642--656. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kazhdan, M., Chazelle, B., Dobkin, D., Funkhouser, T., and Rusinkiewicz, S. 2003. A reflective symmetry descriptor for 3D models. Algorithmica 38, 1, 201--225. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2004. Symmetry descriptors and 3D shape matching. Symp. on Geom. Proc., 115--123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Köhler, W. 1929. Gestalt Psychology. Liveright, New York.Google ScholarGoogle Scholar
  19. Leyton, M. 1992. Symmetry, Causality, Mind. MIT Press.Google ScholarGoogle Scholar
  20. Leyton, M. 2001. A Generative Theory of Shape. Lecture Notes in Computer Science, Vol. 2145. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Liu, R., and Zhang, H. 2007. Mesh segmentation via spectral embedding and contour analysis. Computer Graphics Forum (Special Issue of Eurographics) 26, 3, 385--394.Google ScholarGoogle ScholarCross RefCross Ref
  22. Loy, G., and Eklundh, J.-O. 2006. Detecting symmetry and symmetric constellations of features. In Proc. Euro. Conf. on Comp. Vis., 508--521. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Martinet, A., Soler, C., Holzschuch, N., and Sillion, F. X. 2006. Accurate detection of symmetries in 3D shapes. ACM Trans. on Graph 25, 2, 439--464. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Mitra, N. J., Guibas, L. J., and Pauly, M. 2006. Partial and approximate symmetry detection for 3D geometry. ACM Trans. on Graph 25, 3, 560--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Mitra, N. J., Guibas, L. J., and Pauly, M. 2007. Symmetrization. ACM Trans. on Graph 26, 3, 63:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Ovsjanikov, M., Sun, J., and Guibas, L. 2008. Global intrinsic symmetries of shapes. Computer Graphics Forum (Proc. of Symposium on Geometry Processing) 27, 5, 1341--1348. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H., and Guibas, L. 2008. Discovering structural regularity in 3D geometry. ACM Trans. on Graph 27, 3, 43:1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., and Funkhouser, T. 2006. A planar-reflective symmetry transform for 3D shapes. ACM Trans. on Graph 25, 3, 549--559. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Podolak, J., Golovinskiy, A., and Rusinkiewicz, S. 2007. Symmetry-enhanced remeshing of surfaces. Symp. on Geom. Proc., 235--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Raviv, D., Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2007. Symmetries of non-rigid shapes. Proc. Int. Conf. on Comp. Vis.Google ScholarGoogle Scholar
  31. Riklin-Raviv, T., Kiryati, N., and Sochen, N. 2006. Segmentation by level sets and symmetry. Proc. IEEE Conf. on Comp. Vis. and Pat. Rec. 1, 1015--1022. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Rustamov, R. M. 2007. Laplace-beltrami eigenfuctions for deformation invariant shape representation. Symp. on Geom. Proc., 225--233. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Rustamov, R. M. 2008. Augmented planar reflective symmetry transform. The Visual Computer 24, 6, 423--433. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Shamir, A. 2006. Segmentation and shape extraction of 3D boundary meshes. Eurographics STAR Report, 137--149.Google ScholarGoogle Scholar
  35. Shapira, L., Shamir, A., and Cohen-Or, D. 2008. Consistent mesh partitioning and skeletonization using the shape diameter function. The Visual Computer 24, 4, 249--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Simari, P., Kalogerakis, E., and Singh, K. 2006. Folding meshes: hierarchical mesh segmentation based on planar symmetry. Symp. on Geom. Proc., 111--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Stewart, I., and Golubitsky, M. 1992. Fearful Symmetry: Is God a Geometer? Blackwell Cambridge, MA.Google ScholarGoogle Scholar
  38. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S. J., and Hoppe, H. 2005. Fast exact and approximate geodesics on meshes. ACM Trans. on Graph 24, 3, 553--560. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Thrun, S., and Wegbreit, B. 2005. Shape from symmetry. Proc. Int. Conf. on Comp. Vis., 1824--1831. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Weyl, H. 1983. Symmetry. Princeton University Press.Google ScholarGoogle Scholar
  41. Wolter, J. D., Woo, T. C., and Volz, R. A. 1985. Optimal algorithms for symmetry detection in two and three dimensions. The Visual Computer 1, 1, 37--48.Google ScholarGoogle ScholarCross RefCross Ref
  42. Yeh, Y.-T., and Mech, R. 2009. Detecting symmetries and curvilinear arrangements in vector art. Computer Graphics Forum (Special Issue of Eurographics) 28, 2, 707--716.Google ScholarGoogle ScholarCross RefCross Ref
  43. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., and Shum, H.-Y. 2004. Mesh editing with poisson-based gradient field manipulation. ACM Trans. on Graph 23, 3, 644--651. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Zabrodsky, H., and Weinshall, D. 1997. Using bilateral symmetry to improve 3D reconstruction from image sequences. Computer Vision and Image Understanding 67, 48--57. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Partial intrinsic reflectional symmetry of 3D shapes

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              SIGGRAPH Asia '09: ACM SIGGRAPH Asia 2009 papers
              December 2009
              669 pages
              ISBN:9781605588582
              DOI:10.1145/1661412

              Copyright © 2009 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 1 December 2009

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

              Acceptance Rates

              SIGGRAPH Asia '09 Paper Acceptance Rate70of275submissions,25%Overall Acceptance Rate178of869submissions,20%

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader