skip to main content
research-article

EFCOSS: An interactive environment facilitating optimal experimental design

Published: 23 April 2010 Publication History

Abstract

An interactive software environment is proposed that combines numerical simulation codes with optimization software packages in an automated and modular way. It simplifies the experimentation with varying objective functions for common optimization problems such as parameter estimation and optimal experimental design that are frequently encountered in computational science and engineering. The design philosophy takes into consideration the need for derivatives of potentially large-scale simulation codes via automatic differentiation as well as distributed computing in a heterogenous environment via CORBA.

References

[1]
Abate, J., Bischof, C., Carle, A., and Roh, L. 1997. Algorithms and design for a second-order automatic differentiation module. In Proceedings of the International Symposium on Symbolic and Algebraic Computing (ISSAC). ACM Press, New York, 149--155.
[2]
Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D. 1999. LAPACK Users' Guide, third ed. Society for Industrial and Applied Mathematics, Philadelphia, PA.
[3]
Ascher, D., Dubois, P. F., Hinsen, K., Hugunin, J., and Oliphant, T. 2001. Numerical Python—an open source project. Tech. Rep. UCRL-MA-128569, Lawrence Livermore National Laboratory, Livermore, CA, September.
[4]
Atkinson, A. C. and Donev, A. N. 1992. Optimum Experimental Designs. Oxford Statistical Science Series, vol. 8. Oxford University Press, Oxford, UK.
[5]
Bäck, T. 1996. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press USA, New York.
[6]
Balay, S., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Smith, B. F., and Zhang, H. 2004. PETSc users manual. Tech. Rep. ANL--95/11 -- Revision 2.1.5, Argonne National Laboratory, Argonne, IL.
[7]
Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F. 1997. Efficient management of parallelism in object oriented numerical software libraries. In Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, Eds. Birkhäuser Press, Boston, MA, 163--202.
[8]
Bardow, A., Bischof, C. H., Bücker, H. M., Dietze, G., Kneer, R., Leefken, A., Marquardt, W., Renz, U., and Slusanschi, E. 2008. Sensitivity-based analysis of the k-ϵ model for the turbulent flow between two plates. Chem. Eng. Sci. 63, 19, 4763--4775.
[9]
Beazley, D. M. 1996. SWIG: An easy to use tool for integrating scripting languages with C and C++. In Proceedings of the 4th Annual USENIX Tcl/Tk Workshop, Monterey. 129--139.
[10]
Beazley, D. M. 2003. Automated scientific software scripting with SWIG. Future Gen. Comput. Syst. 19, 5, 599--609.
[11]
Benson, S. J., McInnes, L. C., Moré, J., and Sarich, J. 2005. TAO user manual (revision 1.8). Tech. Rep. ANL/MCS--TM--242, Mathematics and Computer Science Division, Argonne National Laboratory. http://www.mcs.anl.gov/tao.
[12]
Benson, S. J., McInnes, L. C., and Moré, J. J. 2001. A case study in the performance and scalability of optimization algorithms. ACM Trans. Math. Softw. 27, 3, 361--376.
[13]
Bischof, C., Carle, A., Khademi, P., and Mauer, A. 1996. Adifor 2.0: Automatic differentiation of Fortran 77 programs. IEEE Computational Science & Engineering 3, 3, 18--32.
[14]
Bischof, C. H., Bücker, H. M., Lang, B., and Rasch, A. 2003a. An interactive environment for supporting the transition from simulation to optimization. Sci. Prog. 11, 4, 263--272.
[15]
Bischof, C. H., Bücker, H. M., Lang, B., and Rasch, A. 2003b. Solving large-scale optimization problems with EFCOSS. Advances Eng. Softw. 34, 10, 633--639.
[16]
Bischof, C. H., Bücker, H. M., Rasch, A., and Slusanschi, E. 2003. Evaluation of a computer model for wavy falling films using EFCOSS. In Computational Science and Its Applications—Proceedings of the International Conference on Computational Science and its Applications (ICCSA) Part II, V. Kumar, M. L. Gavrilova, C. J. K. Tan, and P. L'Ecuyer, Eds. Lecture Notes in Computer Science, vol. 2668. Springer, Berlin, 78--84.
[17]
Bischof, C. H., Roh, L., and Mauer, A. 1997. ADIC—An extensible automatic differentiation tool for ANSI-C. Softw. Practice Experience 27, 12, 1427--1456.
[18]
Bouaricha, A. and Schnabel, R. B. 1997. Algorithm 768: TENSOLVE: A software package for solving systems of nonlinear equations and nonlinear least-squares problems using tensor methods. ACM Trans. Math. Softw. 23, 2, 174--195.
[19]
Chow, T.-T., Eskow, E., and Schnabel, R. B. 1994. Algorithm 739: A software package for unconstrained optimization using tensor methods. ACM Trans. Math. Softw. 20, 4, 518--530.
[20]
Czyzyk, J., Mesnier, M. P., and Moré, J. J. 1998. The NEOS server. IEEE Computational Science & Engineering 5, 3, 68--75.
[21]
Dennis, J. E., Gay, D. M., and Welsch, R. E. 1981a. An adaptive nonlinear least-squares algorithm. ACM Trans. Math. Softw. 7, 3, 348--368.
[22]
Dennis, J. E., Gay, D. M., and Welsch, R. E. 1981b. Algorithm 573: NL2SOL--an adaptive nonlinear least-squares algorithm. ACM Trans. Math. Softw. 7, 3, 369--383.
[23]
Dubois, P. F., Hinsen, K., and Hugunin, J. 1996. Numerical Python. Computers in Physics 10, 3, 262--267.
[24]
Dubois, P. F. and Yang, T.-Y. 1999. Extending Python with Fortran. Comput. Sci. Eng. 1, 5, 66--73.
[25]
Fagan, M. and Carle, A. 2000. Adifor 3.0 overview. Tech. Rep. CAAM--TR00--03, Rice University, Department of Computational and Applied Mathematics, Houston, TX.
[26]
Fedorov, V. V. and Khabarov, V. 1986. Duality of optimal designs for model discrimination and parameter estimation. Biometrika 73, 183--190.
[27]
Ferris, M. C., Mesnier, M. P., and Moré, J. J. 2000. NEOS and Condor: Solving optimization problems over the Internet. ACM Trans. Math. Softw. 26, 1, 1--18.
[28]
Forth, S. A. 2006. An efficient overloaded implementation of forward mode automatic differentiation in MATLAB. ACM Trans. Math. Softw. 32, 2, 195--222.
[29]
Fox, P. A., Hall, A. P., and Schryer, N. L. 1978. The PORT mathematical subroutine library. ACM Trans. Math. Softw. 4, 2, 104--126.
[30]
Gay, D. M. 1983. Algorithm 611: Subroutines for unconstrained minimization using a model/trust-region approach. ACM Trans. Math. Softw. 9, 4, 503--524.
[31]
Gay, D. M. 1990. Usage summary for selected optimization routines. Computing Science Tech. Rep. 153, AT&T Bell Laboratories, Murray Hill, NJ.
[32]
Gill, P. E., Murray, W., and Saunders, M. A. 2002. SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12, 4, 979--1006.
[33]
Good, M., Goux, J.-P., Nocedal, J., and Pereyra, V. 2002. iNEOS: An interactive environment for nonlinear optimization. Appl. Numer. Math. 40, 1--2, 49--57.
[34]
Grisby, D., Lo, S.-L., and Riddoch, D. 2006. The omniORB version 4.1 User's Guide. Apasphere Ltd. and AT&T Laboratories Cambridge.
[35]
Gropp, W. and Moré, J. J. 1997. Optimization environments and the NEOS server. In Approximation Theory and Optimization, M. D. Buhmann and A. Iserles, Eds. Cambridge University Press, Cambridge, UK, 167--182.
[36]
Gross-Hardt, E., Slusanschi, E., Bücker, H. M., Pfennig, A., and Bischof, C. H. 2008. Practical shape optimization of a levitation device for single droplets. Optim. Eng. 9, 2, 179--199.
[37]
Kenny, J. P., Benson, S. J., Alexeev, Y., Sarich, J., Janssen, C. L., McInnes, L. C., Krishnan, M., Nieplocha, J., Jurrus, E., Fahlstrom, C., and Windus, T. L. 2004. Component-based integration of chemistry and optimization software. J. Computat. Chem. 25, 14, 1717--1725.
[38]
Kolda, T. G., Lewis, R. M., and Torczon, V. 2003. Optimization by direct search: New perspectives on some classical and modern methods. SIAM Rev. 45, 3, 385--482.
[39]
Körkel, S. 2002. Numerische Methoden für optimale Versuchsplanungsprobleme bei nichtlinearen DAE-Modellen. Ph.D. thesis, University of Heidelberg, Germany.
[40]
Lawrence, C. T. and Tits, A. L. 1996. Nonlinear equality constraints in feasible sequential quadratic programming. Optim. Meth. Softw. 6, 4, 265--282.
[41]
Lindström, P. 1982. A stabilized Gauss-Newton algorithm for unconstrained least squares problems. Tech. Rep. UMINF-102.82, Institute of Information Processing, University of Umeå, Umeå, Sweden.
[42]
Lindström, P. 1983. A general purpose algorithm for nonlinear least squares problems with nonlinear constraints. Tech. Rep. UMINF-103.83, Institute of Information Processing, University of Umeå, Umeå, Sweden.
[43]
Moré, J. J., Garbow, B. S., and Hillstrom, K. E. 1980. User guide for MINPACK-1. Tech. Rep. ANL--80--74, Argonne National Laboratory, Argonne, IL.
[44]
Moré, J. J., Sorensen, D. C., Garbow, B. S., and Hillstrom, K. E. 1984. The MINPACK project. In Sources and Development of Mathematical Software, W. R. Cowell, Ed. Prentice-Hall series in Computational Mathematics. Prentice-Hall, Englewood Cliffs, NJ, 88--111.
[45]
Nocedal, J. and Wright, S. J. 2006. Numerical Optimization 2nd Ed. Springer Series in Operations Research. Springer, New York.
[46]
Object Management Group. 1999. The common object request broker: Architecture and specification. Revision 2.3.1. ftp://ftp.omg.org/pub/docs/formal/99-10-07.pdf.
[47]
Object Management Group. 2004. Naming service specification. Version 1.3. ftp://ftp.omg.org/pub/docs/formal/04-10-03.pdf.
[48]
Peterson, P. 2005. F2PY: Fortran to Python interface generator. http://cens.ioc.ee/projects/f2py2e.
[49]
Rasch, A. 2007. Efficient computation of derivatives for optimal experimental design. Ph.D. thesis, Department of Computer Science, RWTH Aachen University, Germany.
[50]
Rasch, A., Bücker, H. M., and Bardow, A. 2009. Software supporting optimal experimental design: A case study of binary diffusion experiments using EFCOSS. Comput. Chem. Eng. 33, 4, 838--849.
[51]
Schittkowski, K. 2002. EASY-FIT: A software system for data fitting in dynamic systems. Structural Multidisc. Optim. 23, 2, 153--169.
[52]
Schnabel, R. B., Koontz, J. E., and Weiss, B. E. 1985. A modular system of algorithms for unconstrained minimization. ACM Trans. Math. Softw. 11, 4, 419--440.
[53]
Spellucci, P. 1998a. A new technique for inconsistent QP problems in the SQP method. Math. Meth. Oper. Res. 47, 3, 355--400.
[54]
Spellucci, P. 1998b. An SQP method for general nonlinear programs using only equality constrained subproblems. Math. Prog. 82, 3, 413--448.
[55]
Wächter, A. and Biegler, L. T. 2006. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Prog. 106, 1, 25--57.
[56]
Walter, E. and Pronzato, L. 1990. Qualitative and quantitative experiment design for phenomenological models -- a survey. Automatica 26, 2, 195--213.
[57]
Walter, E. and Pronzato, L. 1997. Identification of Parametric Models from Experimental Data. Communications and Control Engineering. Springer Verlag, Berlin.
[58]
Zhou, J. L., Tits, A. L., and Lawrence, C. T. 1997. User's Guide for FFSQP Version 3.7—A FORTRAN Code for Solving Constrained Nonlinear (Minimax) Optimization Problems. Institute for Systems Research, University of Maryland, College Park, MD.
[59]
Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J. 1997. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization. ACM Trans. Math. Softw. 23, 4, 550--560.

Cited By

View all
  • (2024)The optimal experiment? Influence of solution strategies on model-based optimal experimental designComputers & Chemical Engineering10.1016/j.compchemeng.2024.108746187(108746)Online publication date: Aug-2024
  • (2022) Pyomo.DOE : An open‐source package for model‐based design of experiments in Python AIChE Journal10.1002/aic.1781368:12Online publication date: 8-Jul-2022
  • (2020)SHEMAT-Suite: An open-source code for simulating flow, heat and species transport in porous mediaSoftwareX10.1016/j.softx.2020.10053312(100533)Online publication date: Jul-2020
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 37, Issue 2
April 2010
281 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/1731022
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 April 2010
Accepted: 01 August 2009
Revised: 01 June 2008
Received: 01 August 2007
Published in TOMS Volume 37, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Problem solving environments
  2. automatic differentiation
  3. distributed computing
  4. optimal experimental design
  5. parameter estimation

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)13
  • Downloads (Last 6 weeks)1
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)The optimal experiment? Influence of solution strategies on model-based optimal experimental designComputers & Chemical Engineering10.1016/j.compchemeng.2024.108746187(108746)Online publication date: Aug-2024
  • (2022) Pyomo.DOE : An open‐source package for model‐based design of experiments in Python AIChE Journal10.1002/aic.1781368:12Online publication date: 8-Jul-2022
  • (2020)SHEMAT-Suite: An open-source code for simulating flow, heat and species transport in porous mediaSoftwareX10.1016/j.softx.2020.10053312(100533)Online publication date: Jul-2020
  • (2016)Optimal experimental design for reservoir property estimates in geothermal explorationComputational Geosciences10.1007/s10596-016-9565-420:2(375-383)Online publication date: 18-Mar-2016
  • (2014)Adjoint-based optimization of experimental designs with many control variablesJournal of Process Control10.1016/j.jprocont.2014.06.01924:10(1504-1515)Online publication date: Oct-2014
  • (2013)Model Identification for Flow Simulations in Geothermal Reservoirs: Towards Optimally Drilling BoreholesPAMM10.1002/pamm.20131016813:1(345-346)Online publication date: 29-Nov-2013
  • (2011)Solving a parameter estimation problem in a three-dimensional conical tube on a parallel and distributed software infrastructureJournal of Computational Science10.1016/j.jocs.2011.01.0022:2(95-104)Online publication date: May-2011

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media