skip to main content
10.1145/1833349.1778819acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Volume contact constraints at arbitrary resolution

Published:26 July 2010Publication History

ABSTRACT

We introduce a new method for simulating frictional contact between volumetric objects using interpenetration volume constraints. When applied to complex geometries, our formulation results in dramatically simpler systems of equations than those of traditional mesh contact models. Contact between highly detailed meshes can be simplified to a single unilateral constraint equation, or accurately processed at arbitrary geometry-independent resolution with simultaneous sticking and sliding across contact patches. We exploit fast GPU methods for computing layered depth images, which provides us with the intersection volumes and gradients necessary to formulate the contact equations as linear complementarity problems. Straightforward and popular numerical methods, such as projected Gauss-Seidel, can be used to solve the system. We demonstrate our method in a number of scenarios and present results involving both rigid and deformable objects at interactive rates.

Skip Supplemental Material Section

Supplemental Material

tp026-10.mp4

mp4

63.7 MB

References

  1. Allard, J., Cotin, S., Faure, F., Bensoussan, P.-J., Poyer, F., Duriez, C., Delingette, H., and Grisoni, L. 2007. SOFA -- an open source framework for medical simulation. In Medicine Meets Virtual Reality (MMVR'15), 13--18. http://www.sofa-framework.org.Google ScholarGoogle Scholar
  2. Anitescu, M., and Hart, G. D. 2004. Constraint-stabilized time-stepping approach for rigid multibody dynamics with joints, contact and friction. International Journal for Numerical Methods in Engineering 60, 14, 2335--2371.Google ScholarGoogle ScholarCross RefCross Ref
  3. Anitescu, M., and Potra, F. 1997. Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dynamics 14, 3, 231--247.Google ScholarGoogle ScholarCross RefCross Ref
  4. Ascher, U. M., and Petzold, L. R. 1998. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Baciu, G., and Wong, W. S.-K. 2004. Image-based collision detection for deformable cloth models. IEEE Transactions on Visualization and Computer Graphics 10, 6, 649--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proceedings of SIGGRAPH 98, ACM, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Baraff, D. 1991. Coping with friction for non-penetrating rigid body simulation. Computer Graphics (Proceedings of SIGGRAPH 91) 25, 4, 31--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Baraff, D. 1994. Fast contact force computation for nonpenetrating rigid bodies. In Proceedings of SIGGRAPH 94, ACM, 23--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Barbič, J., and James, D. 2007. Time-critical distributed contact for 6-DoF haptic rendering of adaptively sampled reduced deformable models. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, 171--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Transactions on Graphics 26, 3, 100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Baumgarte, J. 1972. Stabilization of constraints and integrals of motion in dynamical systems. Computer Methods in Applied Mechanics and Engineering 1, 1--16.Google ScholarGoogle ScholarCross RefCross Ref
  12. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. In Proceedings of SIGGRAPH 2002, ACM, 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Cline, M. B., and Pai, D. K. 2003. Post-stabilization for rigid body simulation with contact and constraints. In IEEE International Conference on Robotics and Automation, 3744--3751.Google ScholarGoogle Scholar
  14. Debunne, G., Desbrun, M., Cani, M.-P., and Barr, A. H. 2001. Dynamic real-time deformations using space and time adaptive sampling. In Proceedings of SIGGRAPH 2001, ACM, 31--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Duriez, C., Dubois, F., Kheddar, A., and Andriot, C. 2006. Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Transactions on Visualization and Computer Graphics 12, 1, 36--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Erleben, K. 2007. Velocity-based shock propagation for multi-body dynamics animation. ACM Transactions on Graphics 26, 2, 12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Faure, F., Barbier, S., Allard, J., and Falipou, F. 2008. Image-based collision detection and response between arbitrary volume objects. In SCA '08: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 155--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Gottschalk, S., Lin, M. C., and Manocha, D. 1996. OBB-Tree: a hierarchical structure for rapid interference detection. In Proceedings of SIGGRAPH 96, ACM, 171--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Guendelman, E., Bridson, R., and Fedkiw, R. Nonconvex rigid bodies with stacking. ACM Transactions on Graphics 22, 3, 871--878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Harmon, D., Vouga, E., Tamstorf, R., and Grinspun, E. 2008. Robust treatment of simultaneous collisions. ACM Transactions on Graphics 27, 3, 1--4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Harmon, D., Vouga, E., Smith, B., Tamstorf, R., and Grinspun, E. 2009. Asynchronous contact mechanics. ACM Transactions on Graphics 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Heidelberger, B., Teschner, M., and Gross, M. 2003. Real-time volumetric intersections of deforming objects. In Proceedings of Vision, Modeling, Visualization (VMV), 461--468.Google ScholarGoogle Scholar
  23. Heidelberger, B., Teschner, M., and Gross, M. 2004. Detection of collisions and self-collisions using image-space techniques. In Proceedings of WSCG'04, 145--152.Google ScholarGoogle Scholar
  24. Hubbard, P. M. 1995. Collision Detection for Interactive Graphics Applications. PhD thesis, Brown University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. James, D. L., and Pai, D. K. 2004. BD-tree: output-sensitive collision detection for reduced deformable models. ACM Transactions on Graphics 23, 3, 393--398. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kaufman, D. M., Edmunds, T., and Pai, D. K. 2005. Fast frictional dynamics for rigid bodies. ACM Transactions on Graphics 24, 3, 946--956. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kaufman, D. M., Sueda, S., James, D. L., and Pai, D. K. 2008. Staggered projections for frictional contact in multibody systems. ACM Transactions on Graphics 27, 5, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Lloyd, J. E. 2005. Fast implementation of Lemke's algorithm for rigid body contact simulation. In IEEE International Conference on Robotics and Automation, 4538--4543.Google ScholarGoogle ScholarCross RefCross Ref
  29. Milenkovic, V. J., and Schmidl, H. 2001. Optimization-based animation. In Proceedings of SIGGRAPH 2001, ACM, 37--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Müller, M. 2008. Hierarchical position based dynamics. In VRIPHYS 08: Fifth Workshop in Virtual Reality Interactions and Physical Simulations, Eurographics Association, 1--10.Google ScholarGoogle Scholar
  31. Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. 2005. Physically based deformable models in computer graphics. In Eurographics 2005 - State of the Art Reports, 71--94.Google ScholarGoogle Scholar
  32. Nesme, M., Payan, Y., and Faure, F. 2005. Efficient, physically plausible finite elements. In Eurographics 2005 - Short Papers, 77--80.Google ScholarGoogle Scholar
  33. Otaduy, M. A., Jain, N., Sud, A., and Lin, M. C. 2004. Haptic display of interaction between textured models. In Proceedings of IEEE Visualization Conference, 297--304. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Otaduy, M. A., Germann, D., Redon, S., and Gross, M. 2007. Adaptive deformations with fast tight bounds. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Otaduy, M. A., Tamstorf, R., Steinemann, D., and Gross, M. 2009. Implicit contact handling for deformable objects. Computer Graphics Forum (Proceedings of Eurographics) 28, 2, 559--568.Google ScholarGoogle ScholarCross RefCross Ref
  36. Pabst, S., Thomaszewski, B., and Strasser, W. 2009. Anisotropic friction for deformable surfaces and solids. In SCA '09: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 149--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Parker, E. G., and O'Brien, J. F. 2009. Real-time deformation and fracture in a game environment. In SCA '09: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 165--175. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Pauly, M., Pai, D. K., and Guibas, L. J. 2004. Quasi-rigid objects in contact. In SCA '04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, 109--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Provot, X. 1997. Collision and self-collision handling in cloth model dedicated to design garments. In Proceedings of 8th Eurographics Workshop on Animation and Simulation, 177--189.Google ScholarGoogle ScholarCross RefCross Ref
  40. Shi, L., Yu, Y., Bell, N., and Feng, W.-W. 2006. A fast multigrid algorithm for mesh deformation. ACM Transactions on Graphics 25, 3, 1108--1117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Stewart, D. E., and Trinkle, J. C. 1996. An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and coulomb friction. International Journal of Numerical Methods Engineering 39, 15, 2673--2691.Google ScholarGoogle ScholarCross RefCross Ref
  42. Stewart, D. E. 2000. Rigid-body dynamics with friction and impact. SIAM Review 42, 1, 3--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Sud, A., Govindaraju, N., Gayle, R., Kabul, I., and Manocha, D. 2006. Fast proximity computation among deformable models using discrete voronoi diagrams. ACM Transactions on Graphics 25, 3, 1144--1153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Teschner, M., Kimmerle, S., Heidelberge, B., Zachmann, G., Raghupathi, L., Fuhrmann, A., Cani, M.-P., Faure, F., Magnenat-Thalmann, N., Strasser, W., and Volino, P. 2004. Collision detection for deformable objects. In Eurographics 2004 - State of the Art Reports.Google ScholarGoogle Scholar
  45. van den Bergen, G. 1997. Efficient collision detection of complex deformable models using aabb trees. Journal of Graphics Tools 2, 4, 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Vassilev, T., Spanlang, B., and Chrysanthou, Y. 2001. Fast cloth animation on walking avatars. Computer Graphics Forum (Proceedings of Eurographics) 20, 3, 260--267.Google ScholarGoogle ScholarCross RefCross Ref
  47. Volino, P., and Magnenat-Thalmann, N. 1995. Collision and self-collision detection: Efficient and robust solutions for higly deformable surfaces. In Computer Animation and Simulation '95, 55--65.Google ScholarGoogle Scholar
  48. Wong, W. S.-K., and Baciu, G. 2005. GPU-based intrinsic collision detection for deformable surfaces: Collision detection and deformable objects. Computer Animation and Virtual Worlds 16, 3--4, 153--161. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Volume contact constraints at arbitrary resolution

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SIGGRAPH '10: ACM SIGGRAPH 2010 papers
          July 2010
          984 pages
          ISBN:9781450302104
          DOI:10.1145/1833349

          Copyright © 2010 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 26 July 2010

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          SIGGRAPH '10 Paper Acceptance Rate103of390submissions,26%Overall Acceptance Rate1,822of8,601submissions,21%

          Upcoming Conference

          SIGGRAPH '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader