skip to main content
research-article

A novel algorithm for incompressible flow using only a coarse grid projection

Published:26 July 2010Publication History
Skip Abstract Section

Abstract

Large scale fluid simulation can be difficult using existing techniques due to the high computational cost of using large grids. We present a novel technique for simulating detailed fluids quickly. Our technique coarsens the Eulerian fluid grid during the pressure solve, allowing for a fast implicit update but still maintaining the resolution obtained with a large grid. This allows our simulations to run at a fraction of the cost of existing techniques while still providing the fine scale structure and details obtained with a full projection. Our algorithm scales well to very large grids and large numbers of processors, allowing for high fidelity simulations that would otherwise be intractable.

Skip Supplemental Material Section

Supplemental Material

tp057-10.mp4

mp4

40 MB

References

  1. Berger, M., and Oliger, J. 1984. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484--512.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bolz, J., Farmer, I., Grinspun, E., and Schroder, P. 2003. Sparse matrix solvers on the gpu: Conjugate gradients and multi-grid. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3, 917--924. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bridson, R., Houriham, J., and Nordenstam, M. 2007. Curl-noise for procedural fluid flow. ACM Trans. Graph. 26, 3, 46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Desbrun, M., and Cani, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Comput. Anim. and Sim. '96 (Proc. of EG Wrkshp. on Anim. and Sim.), Springer-Verlag, R. Boulic and G. Hegron, Eds., 61--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dupont, T., and Liu, Y. 2003. Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function. J. Comput. Phys. 190/1, 311--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Fedkiw, R., Stam, J., and Jensen, H. 2001. Visual simulation of smoke. In Proc. of ACM SIGGRAPH 2001, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Foster, N., and Metaxas, D. 1997. Controlling fluid animation. In Comput. Graph. Int., 178--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gao, Y., Li, C.-F., Hu, S.-M., and Barsky, B. A. 2009. Simulating gaseous fluids with low and high speeds. Comput. Graph. Forum 28, 7, 1845--1852.Google ScholarGoogle ScholarCross RefCross Ref
  9. Horvath, C., and Geiger, W. 2009. Directable, high-resolution simulation of fire on the gpu. ACM Trans. Graph. 28, 3, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Kim, B.-M., Liu, Y., Llamas, I., and Rossignac, J. 2005. Using BFECC for fluid simulation. In Eurographics Workshop on Natural Phenomena 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Kim, T., Thürey, N., James, D., and Gross, M. 2008. Wavelet turbulence for fluid simulation. In SIGGRAPH '08: ACM SIGGRAPH 2008 papers, 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kim, D., Song, O.-Y., and Ko, H.-S. 2009. Stretching and wiggling liquids. In SIGGRAPH Asia '09: ACM SIGGRAPH Asia 2009 papers, ACM, New York, NY, USA, 1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Lamorlette, A., and Foster, N. 2002. Structural modeling of flames for a production environment. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 729--735. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Losasso, F., Fedkiw, R., and Osher, S. 2006. Spatially adaptive techniques for level set methods and incompressible flow. Computers and Fluids 35, 995--1010.Google ScholarGoogle ScholarCross RefCross Ref
  16. Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R. 2008. Two-way coupled sph and particle level set fluid simulation. IEEE Trans. on Vis. and Comput. Graph. 14, 4, 797--804. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Molemaker, J., Cohen, J., Patel, S., and Noh, J. 2008. Low viscosity flow simulations for animation. In SCA '08: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, 9--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Mullen, P., Crane, K., Pavlov, D., Tong, Y., and Desbrun, M. 2009. Energy-preserving integrators for fluid animation. In SIGGRAPH '09: ACM SIGGRAPH 2009 papers, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Narain, R., Sewall, J., Carlson, M., and Lin, M. C. 2008. Fast animation of turbulence using energy transport and procedural synthesis. In SIGGRAPH Asia '08: ACM SIGGRAPH Asia 2008 papers, ACM, New York, NY, USA, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Nielsen, M. B., Christensen, B. B., Zafar, N. B., Roble, D., and Museth, K. 2009. Guiding of smoke animations through variational coupling of simulations at different resolutions. In SCA '09: Proc. of the 2009 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 217--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Pfaff, T., Thuerey, N., Selle, A., and Gross, M. 2009. Synthetic turbulence using artificial boundary layers. In SIGGRAPH Asia '09: ACM SIGGRAPH Asia 2009 papers, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Rasmussen, N., Nguyen, D., Geiger, W., and Fedkiw, R. 2003. Smoke simulation for large scale phenomena. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 703--707. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Reeves, W. 1983. Particle systems - a technique for modeling a class of fuzzy objects. In Comput. Graph. (Proc. of SIGGRAPH 83), vol. 17, 359--376. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Schechter, H., and Bridson, R. 2008. Evolving sub-grid turbulence for smoke animation. In SCA '08: Proc. of the 2008 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 910--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. 2008. An unconditionally stable MacCormack method. Journal of Scientific Computing 35, 2, 350--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Stam, J., and Fiume, E. 1993. Turbulent wind fields for gaseous phenomena. In Proc. of SIGGRAPH 1993, 369--376. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Stam, J. 1999. Stable fluids. In Proc. of SIGGRAPH 99, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wicke, M., Stanton, M., and Treuille, A. 2009. Modular bases for fluid dynamics. In SIGGRAPH '09: ACM SIGGRAPH 2009 papers, ACM, New York, NY, USA, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Yoon, J.-C., Kam, H. R., Hong, J.-M., Kang, S.-J., and Kim, C.-H. 2009. Procedural synthesis using vortex particle method for fluid simulation. Comput. Graph. Forum 28, 7, 1853--1859.Google ScholarGoogle ScholarCross RefCross Ref
  32. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A novel algorithm for incompressible flow using only a coarse grid projection

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 29, Issue 4
          July 2010
          942 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1778765
          Issue’s Table of Contents

          Copyright © 2010 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 26 July 2010
          Published in tog Volume 29, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader