skip to main content
10.1145/1833349.1781155acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Data-driven biped control

Published:26 July 2010Publication History

ABSTRACT

We present a dynamic controller to physically simulate under-actuated three-dimensional full-body biped locomotion. Our data-driven controller takes motion capture reference data to reproduce realistic human locomotion through realtime physically based simulation. The key idea is modulating the reference trajectory continuously and seamlessly such that even a simple dynamic tracking controller can follow the reference trajectory while maintaining its balance. In our framework, biped control can be facilitated by a large array of existing data-driven animation techniques because our controller can take a stream of reference data generated on-the-fly at runtime. We demonstrate the effectiveness of our approach through examples that allow bipeds to turn, spin, and walk while steering its direction interactively.

Skip Supplemental Material Section

Supplemental Material

tp014-10.mp4

mp4

108.4 MB

References

  1. Coros, S., Beaudoin, P., Yin, K. K., and van de Panne, M. 2008. Synthesis of constrained walking skills. ACM Transactions on Graphics (SIGGRAPH Asia) 27, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Coros, S., Beaudoin, P., and van de Panne, M. 2009. Robust task-based control policies for physics-based characters. ACM Transactions on Graphics (SIGGRAPH Asia) 28, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. da Silva, M., Abe, Y., and Popović, J. 2008. Interactive simulation of stylized human locomotion. ACM Transactions on Graphics (SIGGRAPH 2008) 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. da Silva, M., Abe, Y., and Popović, J. 2008. Simulation of human motion data using short-horizon model-predictive control. Computer Graphics Forum (Eurographics 2008) 27, 2.Google ScholarGoogle Scholar
  5. da Silva, M., Durand, F., and Popović, J. 2009. Linear bellman combination for control of character animation. ACM Transactions on Graphics (SIGGRAPH 2009) 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. In Proceedings of SIGGRAPH 2001, 251--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Fang, A. C., and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. ACM Transactions on Graphics (SIGGRAPH 2003) 22, 3, 417--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gleicher, M. 1998. Retargeting motion to new characters. In Proceedings of SIGGRAPH 98, 33--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Hodgins, J. K., and Pollard, N. S. 1997. Adapting simulated behaviors for new characters. In Proceedings of SIGGRAPH 1997, 153--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O'Brien, J. F. 1995. Animating human athletics. In Proceedings of SIGGRAPH 95, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Kim, J.-Y., Park, I.-W., and Oh, J.-H. 2007. Walking control algorithm of biped humanoid robot on uneven and inclined floor. J. Intelligent and Robotic Systems 48, 4, 457--484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kim, M., Hyun, K. L., Kim, J., and Lee, J. 2009. Synchronized multi-character motion editing. ACM Transactions on Graphics (SIGGRAPH 2009) 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kim, J., 2009. Virtual Physics: The realtime dynamics simulation library, http://virtualphysics.imrc.kist.re.kr/.Google ScholarGoogle Scholar
  14. Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. ACM Transactions on Graphics (SIGGRAPH 2002) 21, 3, 473--482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Lee, J., and Shin, S. Y. 1999. A hierarchical approach to interactive motion editing for human-like figures. In Proceedings of SIGGRAPH 99, 39--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., and Pollard, N. S. 2002. Interactive control of avatars animated with human motion data. ACM Transactions on Graphics (SIGGRAPH 2002) 21, 3, 491--500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lee, J. 2008. Representing rotations and orientations in geometric computing. IEEE Computer Graphics and Applications 28, 2, 75--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Liu, C. K., and Popović, Z. 2002. Synthesis of complex dynamic character motion from simple animations. vol. 21, 408--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Macchietto, A., Zordan, V., and Shelton, C. R. 2009. Momentum control for balance. ACM Transactions on Graphics (SIGGRAPH 2009) 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Morimoto, J., Zeglin, G., and Atkeson, C. 2003. Minimax differential dynamic programming: Application to a biped walking robot. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.Google ScholarGoogle Scholar
  21. Muico, U., Lee, Y., Popović, J., and Popović, Z. 2009. Contact-aware nonlinear control of dynamic characters. ACM Transactions on Graphics (SIGGRAPH 2009) 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., and Kawato, M. 2004. Learning from demonstration and adaptation of biped locomotion. Robotics and Autonomous Systems 47, 2--3 (June), 79--91.Google ScholarGoogle ScholarCross RefCross Ref
  23. Nakanishi, M., Nomura, T., and Sato, S. 2006. Stumbling with optimal phase reset during gait can prevent a humanoid from falling. Biol. Cybern. 95, 5, 503--515. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Nakaoka, S., Nakazawa, A., and Yokoi, K. 2003. Generating whole body motions for a biped humanoid robot from captured human dances. In Proceedings of the IEEE International Conference on Robotics and Automation, 3905--3910.Google ScholarGoogle Scholar
  25. Rose, C., Cohen, M. F., and Bodenheimer, B. 1998. Verbs and adverbs: Multidimensional motion interpolation. IEEE Computer Graphics & Applications 18, 5 (September - October), 32--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Transactions on Graphics (SIGGRAPH 2004) 23, 3, 514--521. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Sok, K. W., Kim, M., and Lee, J. 2007. Simulating biped behaviors from human motion data. ACM Transactions on Graphics (SIGGRAPH 2007) 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Tedrake, R., Zhang, T. W., and Seung, H. S. 2004. Stochastic policy gradient reinforcement learning on a simple 3d biped. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), 2849--2854.Google ScholarGoogle Scholar
  29. Tsai, Y., Lin, W., Cheng, K. B., Lee, J., and Lee, T. 2009. Real-Time Physics-Based 3D biped character animation using an inverted pendulum model. IEEE Transactions on Visualization and Computer Graphics 99, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wampler, K., and Popović, Z. 2009. Optimal gait and form from animal locomotion. ACM Transactions on Graphics (SIGGRAPH 2009) 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wang, J. M., Fleet, D. J., and Hertzmann, A. 2009. Optimizing walking controllers. ACM Transactions on Graphics (SIGGRAPH Asia 2009) 28, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Yin, K., Loken, K., and van de Panne, M. 2007. Simbicon: Simple biped locomotion control. ACM Transactions on Graphics (SIGGRAPH 2007) 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yin, K., Coros, S., Beaudoin, P., and van de Panne, M. 2008. Continuation methods for adapting simulated skills. ACM Transactions on Graphics (SIGGRAPH 2008) 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Zordan, V. B., and Hodgins, J. K. 2002. Motion capture-driven simulations that hit and react. In Proceedings of ACM SIGGRAPH Symposium on Computer Animation, 89--96. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Data-driven biped control

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGGRAPH '10: ACM SIGGRAPH 2010 papers
        July 2010
        984 pages
        ISBN:9781450302104
        DOI:10.1145/1833349

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 26 July 2010

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        SIGGRAPH '10 Paper Acceptance Rate103of390submissions,26%Overall Acceptance Rate1,822of8,601submissions,21%

        Upcoming Conference

        SIGGRAPH '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader