skip to main content
10.1145/1811039.1811048acmconferencesArticle/Chapter ViewAbstractPublication PagesmetricsConference Proceedingsconference-collections
research-article

Self-synchronizing properties of CSMA wireless multi-hop networks

Authors Info & Claims
Published:14 June 2010Publication History

ABSTRACT

We show that CSMA is able to spontaneously synchronize transmissions in a wireless network with constant-size packets, and that this property can be used to devise efficient synchronized CSMA scheduling mechanisms without message passing. Using tools from queuing theory, we prove that for any connected wireless networks with arbitrary interference constraints, it is possible to implement self-synchronizing TDMA schedules without any explicit message passing or clock synchronization besides transmitting the original data packets, and the interaction can be fully local in that each node decides when to transmit next only by overhearing its neighbors' transmissions. We also provide a necessary and sufficient condition on the emergence of self-synchronization for a given TDMA schedule, and prove that such conditions for self-synchronization can be checked in a finite number of steps for a finite network topology.

References

  1. M. Alicherry, R. Bhatia, and L. Li. Joint channel assignment and routing for throughput optimization in multi-radio wireless mesh networks. In Proc. ACM MobiCom, page 72. ACM, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. F. Baccelli and Z. Liu. On a class of stochastic recursive sequences arising in queueing theory. The Annals of Probability, pages 350--374, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  3. P. Bjorklund and P. Di Yuan. Resource optimization of spatial TDMA in ad hoc radio networks: A column generation approach. In Proc. IEEE INFOCOM, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  4. G. Brar, D. Blough, and P. Santi. Computationally efficient scheduling with the physical interference model for throughput improvement in wireless mesh networks. In Proc. ACM MobiCom, page 13. ACM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. E. Callaway, P. Gorday, L. Hester, J. Gutierrez, M. Naeve, B. Heile, and V. Bahl. Home networking with IEEE 802.15.4: a developing standard for low-rate wireless personal area networks. IEEE Communications Magazine, 40(8):70--77, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. O. Dousse. Revising buffering in multi-hop CSMA/CA wireless networks. In Proc. Secon, pages 580--589, San Diego CA, June 2007.Google ScholarGoogle Scholar
  7. M. Durvy and P. Thiran. A packing approach to compare slotted and non-slotted medium access control. In Proc. IEEE INFOCOM, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  8. S. Ganeriwal, R. Kumar, and M. Srivastava. Timing-sync protocol for sensor networks. In Proc. ACM Sensys, pages 138--149. ACM, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D. Lucarelli and I. Wang. Decentralized synchronization protocols with nearest neighbor communication. In Proc. ACM Sensys, pages 62--68. ACM, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. P. Marbach, A. Eryilmaz, and A. Ozdaglar. Achievable rate region of csma schedulers in wireless networks with primary interference constraints. In Proc. IEEE CDC, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  11. R. Mirollo and S. Strogatz. Synchronization of pulse-coupled biological oscillators. SIAM Journal on Applied Mathematics, 50(6):1645--1662, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Mutazono, M. Sugano, and M. Murata. Evaluation of robustness in time synchronization for sensor networks. In Proc. Bionetics'07, pages 89--92, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  13. R. Nelson and L. Kleinrock. Spatial TDMA -- a collision-free multihop channel access protocol. IEEE Trans. Comm., 33(9):934--944, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  14. T. Park, T. Kim, J. Choi, S. Choi, and W. Kwon. Throughout and energy consumption analysis of IEEE 802.15.4 slotted CSMA/CA. IEEE Electronics Letters, 41(18):1017, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  15. B. Raman and K. Chebrolu. Revisiting MAC design for an 802.11-based mesh network. In Proc. 3rd Workshop on Hot Topics in Networks (HotNets-III), 2004.Google ScholarGoogle Scholar
  16. I. Rhee, A. Warrier, M. Aia, J. Min, and M. Sichitiu. Z-MAC: a hybrid mac for wireless sensor networks. IEEE/ACM Trans. Networking, 16(3):511--524, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. I. Rhee, A. Warrier, J. Min, and L. Xu. DRAND: distributed randomized TDMA scheduling for wireless ad--hoc networks. In Proc. ACM MobiHoc, page 201. ACM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. L. Roberts. ALOHA packet system with and without slots and capture. ACM SIGCOMM Computer Communication Review, 5(2):28--42, 1975. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. N. Salem and J. Hubaux. A fair scheduling for wireless mesh networks. In Proc. WiMesh, 2005.Google ScholarGoogle Scholar
  20. S. Singh, P. Acharya, U. Madhow, and E. Belding-Royer. Sticky CSMA/CA: Implicit synchronization and real-time QoS in mesh networks. Ad Hoc Networks, 5 (6):744--768, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. L. Tassiulas and S. Sarkar. Maxmin fair scheduling in wireless networks. In Proc. IEEE INFOCOM, volume 2, pages 763--772, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  22. K. Xu, O. Dousse, and P. Thiran. Self-synchronizing Properties of CSMA Wireless Multi-hop Networks (Technical Report).http://infoscience.epfl.ch/record/147917/files/XuDT10.pdf.Google ScholarGoogle Scholar

Index Terms

  1. Self-synchronizing properties of CSMA wireless multi-hop networks

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              SIGMETRICS '10: Proceedings of the ACM SIGMETRICS international conference on Measurement and modeling of computer systems
              June 2010
              398 pages
              ISBN:9781450300384
              DOI:10.1145/1811039
              • cover image ACM SIGMETRICS Performance Evaluation Review
                ACM SIGMETRICS Performance Evaluation Review  Volume 38, Issue 1
                Performance evaluation review
                June 2010
                382 pages
                ISSN:0163-5999
                DOI:10.1145/1811099
                Issue’s Table of Contents

              Copyright © 2010 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 14 June 2010

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

              Acceptance Rates

              Overall Acceptance Rate459of2,691submissions,17%

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader