skip to main content
10.1145/1837101.1837108acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Perceptually-motivated graphics, visualization and 3D displays

Published:26 July 2010Publication History

ABSTRACT

This course presents timely, relevant examples on how researchers have leveraged perceptual information for optimization of rendering algorithms, to better guide design and presentation in (3D stereoscopic) display media, and for improved visualization of complex or large data sets. Each presentation will provide references and short overviews of cutting-edge current research pertaining to that area. We will ensure that the most up-to-date research examples are presented by sourcing information from recent perception and graphics conferences and journals such as ACM Transactions on Perception, paying particular attention work presented at the 2010 Symposium on Applied Perception in Graphics and Visualization.

Skip Supplemental Material Section

Supplemental Material

cs017-10.mp4

mp4

45.3 MB

References

  1. B. D. Adelstein, T. G. Lee, and S. R. Ellis. Head tracking latency in virtual environments: Psychophysics and a model. In Proc. of the 47th Annual Human Factors and Ergonomics Society meeting, pages 2083--2087, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  2. Stéphane Albin, Gilles Rougeron, Bernard Péroche, and Alain Trémeau. Quality image metrics for synthetic images based on perceptual color differences. IEEE Transactions on Image Processing, 11(9):961--971, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Robert S. Allison, Laurence R. Harris, Michael Jenkin, Urszula Jasiobedzka, and James E. Zacher. Tolerance of temporal delay in virtual environments. In VR '01: Proceedings of the Virtual Reality 2001 Conference (VR'01), page 247, Washington, DC, USA, 2001. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. D. Ariely. Seeing sets: Representation by statistical properties. Psychological Science, 12(2):157--162, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  5. Ronald Azuma and Gary Bishop. Improving static and dynamic registration in an optical see-through hmd. In SIGGRAPH '94: Proceedings of the 21st annual conference on Computer graphics and interactive techniques, pages 197--204, New York, NY, USA, 1994. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. H. Bailey and B. G. Witmer. Learning and transfer of spatial knowledge in a virtual environment. Proc. of the Human Factors and Ergonomics Society 38th Annual Meeting, pages 1158--1162, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  7. Dirk Bartz, Douglas Cunningham, Jan Fischer, and Christian Wallraven. Star state of the art report the role of perception for computer graphics, 2008.Google ScholarGoogle Scholar
  8. James P. Bliss, Philip D. Tidwell, and Michael A. Guest. The effectiveness of virtual reality for administering spatial navigation training to firefighters. Presence, 6(1):73--86, 1997.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Mark R. Bolin and Gary W. Meyer. A perceptually based adaptive sampling algorithm. Computer Graphics, 32(Annual Conference Series):299--309, August 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. R. Bolin and G. W. Meyer. A frequency based ray tracer. In ACM SIGGRAPH '95 Conference Proceedings, pages 409--418, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. K. R. Brandt, J. M. Gardiner, and C. N. Macrae. The distinctiveness effect in forenames: The role of subjective experiences and recognition memory. British Journal of Psychology, pages 269--280, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  12. K. R. Brandt, C. N. Macrae, A. M. Schloerscheidt, and A. B. Milne. Do i know you? target typicality and recollective experience. Memory, 11(1):89--100, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  13. W. Brewer and J. Treyens. Role of schemata in memory for places. Cognitive Psychology, 13:207--230, 1981.Google ScholarGoogle ScholarCross RefCross Ref
  14. D. E. Broadbent and M. H. P. Broadbent. From detection to identification: Response to multiple targets in rapid serial visual presentation. Perception and Psychophysics, 42(4):105--113, 1987.Google ScholarGoogle ScholarCross RefCross Ref
  15. T. C. Callaghan. Dimensional interaction of hue and brightness in preattentive field segregation. Perception & Psychophysics, 36(1):25--34, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  16. T. C. Callaghan. Interference and domination in texture segregation: Hue, geometric form, and line orientation. Perception & Psychophysics, 46(4):299--311, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  17. T. C. Callaghan. Interference and dominance in texture segregation. In D. Brogan, editor, Visual Search, pages 81--87. Taylor & Francis, New York, New York, 1990.Google ScholarGoogle Scholar
  18. J. Cataliotti and A. Gilchrist. Local and global processes in lightness perception. In Perception and Psychophysics, volume 57(2), pages 125--135. Perception, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  19. K. Cater, A. Chalmers, and G. Ward. Detail to attention: exploiting visual tasks for selective rendering. In EGRW '03: Proceedings of the 14th Eurographics workshop on Rendering, pages 270--280, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Heinrich Conference Chair-Bülthoff and Tom Conference Chair- Troscianko. Apgv '05: Proceedings of the 2nd symposium on applied perception in graphics and visualization. A Coro na, Spain, 2005.Google ScholarGoogle Scholar
  21. Roland W. Conference Chair-Fleming and Sunghee Conference Chair- Kim. Apgv '06: Proceedings of the 3rd symposium on applied perception in graphics and visualization. Boston, Massachusetts, 2006.Google ScholarGoogle Scholar
  22. Victoria Conference Chair-Interrante, Ann Conference Chair-McNamara, Heinrich Program Chair-Bulthoff, and Holly Program Chair-Rushmeier. Apgv '04: Proceedings of the 1st symposium on applied perception in graphics and visualization. Los Angeles, California, 2004.Google ScholarGoogle Scholar
  23. Christian Conference Chair-Wallraven and Veronica Conference Chair-Sundstedt. Apgv '07: Proceedings of the 4th symposium on applied perception in graphics and visualization. Tubingen, Germany, 2007.Google ScholarGoogle Scholar
  24. et AL. Conway, M. A. Changes in memory awareness during learning: The acquisition of knowledge by psychology undergraduates. Journal of Experimental Psychology: General, 126(4):393 413, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  25. Scott Daly. The visible differences predictor: an algorithm for the assessment of image fidelity. In Digital images and human vision, pages 179--206, Cambridge, MA, USA, 1993. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kate Devlin, Alan Chalmers, Alexander Wilkie, and Werner Purgathofer. Star: Tone reproduction and physically based spectral rendering. In Dieter Fellner and Roberto Scopignio, editors, State of the Art Reports, Eurographics 2002, pages 101--123, Vienna, September 2002. The Eurographics Association.Google ScholarGoogle Scholar
  27. S. A. Dewhurst, S. J. Holmes, K. R. Brandt, and G. M. Dean. Measuring the speed of the conscious components of recognition memory: Remembering is faster than knowing. Consciousness and Cognition, 15:147--162, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  28. Huong Q. Dinh, Neff Walker, Chang Song, Akira Kobayashi, and Larry F. Hodges. Evaluating the importance of multi-sensory input on memory and the sense of presence in virtual environments. In VR '99: Proceedings of the IEEE Virtual Reality, page 222, Washington, DC, USA, 1999. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. George Drettakis, Nicolas Bonneel, Carsten Dachsbacher, Sylvain Lefebvre, Michael Schwarz, and Isabelle Viaud-Delmon. An interactive perceptual rendering pipeline using contrast and spatial masking. In Rendering Techniques (Proceedings of the Eurographics Symposium on Rendering). Eurographics, June 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. R. Ellis, K. Mania, B. D. Adelstein, and M. I. Hill. Generalizability of latency detection in a variety of virtual environments. In Proc. of the 48th Annual Human Factors and Ergonomics Society meeting, 2004.Google ScholarGoogle Scholar
  31. S. R. Ellis, M. J. Young, S. M. Ehrlich, and B. D. Adelstein. Discrimination of changes of rendering latency during voluntary hand movement. In Proc. of the 43th Annual Human Factors and Ergonomics Society meeting, pages 1182--1186, 1999.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S. R. Ellis, A. Wolfram, and B. D. Adelstein. Large amplitude three-dimensional tracking in augmented environments: a human performance trade-off between system latency and update rate. In Proc. of the 46th Annual Human Factors and Ergonomics Society meeting, 2002.Google ScholarGoogle Scholar
  33. Stephen R. Ellis, F. Breant, Brian M. Menges, Richard H. Jacoby, and Bernard D. Adelstein. Operator interaction with visual objects: Effect of system latency. HCI (2), pages 973--976, 1997.Google ScholarGoogle Scholar
  34. Stephen R. Ellis, Mark J. Young, Bernard D. Adelstein, and Sheryl M. Ehrlich. Discrimination of changes in latency during head movement. HCI (2), pages 1129--1133, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Land. M. F. Motion and vision: why animals move their eyes. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioural Physiology, 185(4):341--352, 1999.Google ScholarGoogle Scholar
  36. Jean-Philippe Farrugia and Bernard Péroche. A progressive rendering algorithm using an adaptive perceptually based image metric. Comput. Graph. Forum, 23(3):605--614, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  37. J. Ferwerda. Hi-fi rendering. ACM Siggraph Eurographics campfire on perceptually adaptive graphics. http://isg.cs.tcd.ie/campfire/jimferwerda2.html, 2001.Google ScholarGoogle Scholar
  38. Philip W. Fink, Patrick S. Foo, and William H. Warren. Obstacle avoidance during walking in real and virtual environments. ACM Trans. Appl. Percept., 4(1):2, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. R. Flannery, K. A. Walles. How does schema theory apply to real versus virtual memories? Cyberspychology and Behavior, 6(2):151--159, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  40. Harald Frenz, Markus Lappe, Marina Kolesnik, and Thomas Bührmann. Estimation of travel distance from visual motion in virtual environments. ACM Trans. Appl. Percept., 4(1):3, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. J. M. Gardiner and A. Richardson-klavehn. Remembering and knowing. In: Tulving, E. and Craik, F. I. M., eds. Handbook of Memory, 1992.Google ScholarGoogle Scholar
  42. S. Gibson and R. J. Hubbold. Efficient hierarchical refinement and clustering for radiosity in complex environments. Computer Graphics Forum, 15(5):297--310, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  43. A. Gilchrist, S. Delman, and A. Jacobsen. The classification and integration of edges as critical to the perception of reflectance and illumination. Perception and Psychophysics, 33(5):425--436, 1983.Google ScholarGoogle ScholarCross RefCross Ref
  44. A. L. Gilchrist. The perception of surface blacks and whites. Scientific American, 240(3):88--97, March 1979.Google ScholarGoogle ScholarCross RefCross Ref
  45. Alan Gilchrist and Alan Jacobsen. Perception of lightness and illumination in a world of one reflectance. Perception, 13:5--19, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  46. Baining Guo. Progressive radiance evaluation using directional coherence maps. In SIGGRAPH '98: Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pages 255--266, New York, NY, USA, 1998. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Jörg Haber, Karol Myszkowski, Hitoshi Yamauchi, and Hans-Peter Seidel. Perceptually guided corrective splatting. Computer Graphics Forum, 20(3), 2001.Google ScholarGoogle Scholar
  48. Christopher G. Healey and James T. Enns. Building perceptual textures to visualize multidimensional datasets. In Proceedings Visualization '98, pages 111--118, Research Triangle Park, North Carolina, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Christopher G. Healey and James T. Enns. Large datasets at a glance: Combining textures and colors in scientific visualization. IEEE Transactions on Visualization and Computer Graphics, 5(2):145--167, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. David Hedley, Adam Worrall, and Derek Paddon. Selective culling of discontinuity lines. In Julie Dorsey and Philipp Slusallek, editors, Rendering Techniques '97 (Proceedings of the Eighth Eurographics Workshop on Rendering), pages 69--80. Springer Wien, 1997. ISBN 3-211-83001-4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. R. Held, A. Efsathiouand, and M Greene. Adaptation to displaced and delayed visual feedback from the hand. Journal of Experimental Psychology, 72(6):887--891, 1966.Google ScholarGoogle ScholarCross RefCross Ref
  52. L. Huang and H. Pashler. A boolean map theory of visual attention. Psychological Review, 114(3):599--631, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  53. L. Huang, A. Treisman, and H. Pashler. Characterizing the limits of human visual awareness. Science, 317:823--825, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  54. Laurent Itti, Christof Koch, and Ernst Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell., 20(11):1254--1259, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. B. Julész. Foundations of Cyclopean Perception. University of Chicago Press, Chicago, Illinois, 1971.Google ScholarGoogle Scholar
  56. B. Julész. Experiments in the visual perception of texture. Scientific American, 232:34--43, 1975.Google ScholarGoogle ScholarCross RefCross Ref
  57. B. Julész. A theory of preattentive texture discrimination based on first-order statistics of textons. Biological Cybernetics, 41:131--138, 1981.Google ScholarGoogle ScholarCross RefCross Ref
  58. B. Julész, E. N. Gilbert, and L. A. Shepp. Inability of humans to discriminate between visual textures that agree in second-order statistics---revisited. Perception, 2:391--405, 1973.Google ScholarGoogle ScholarCross RefCross Ref
  59. B. Julész, E. N. Gilbert, and J. D. Victor. Visual discrimination of textures with identical third-order statistics. Biological Cybernetics, 31:137--140, 1978.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. J. Y. Jung, B. D. Adelstein, and S. R. Ellis. Discriminability of prediction artifacts in a time delayed virtual environment. In Proc. of the 44th Annual Human Factors and Ergonomics Society meeting, pages 499--502, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  61. Grzegorz Krawczyk, Karol Myszkowski, and Hans-Peter Seidel. Light-ness perception in tone reproduction for high dynamic range images. In The European Association for Computer Graphics 26th Annual Conference EUROGRAPHICS 2005, volume 24 of Computer Graphics Forum, pages xx--xx, Dublin, Ireland, 2005. Blackwell.Google ScholarGoogle Scholar
  62. Grzegorz Krawczyk, Karol Myszkowski, and Hans-Peter Seidel. Computational model of lightness perception in high dynamic range imaging. In Bernice E. Rogowitz, Thrasyvoulos N. Pappas, and Scott J. Daly, editors, Human Vision and Electronic Imaging XI, IS&T SPIE's 18th Annual Symposium on Electronic Imaging (2006), volume xxxx, pages xxx--xxx, 2006.Google ScholarGoogle Scholar
  63. Gregory Ward Larson, Holly Rushmeier, and Christine Piatko. A Visibility Matching Tone Reproduction Operator for High Dynamic Range Scenes. IEEE Transactions on Visualization and Computer Graphics, 3(4):291--306, October 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. William B. Lathrop and Mary K. Kaiser. Perceived orientation in physical and virtual environments: changes in perceived orientation as a function of idiothetic information available. Presence: Teleoper. Virtual Environ., 11(1):19--32, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Guillaume Lavoué. A roughness measure for 3d mesh visual masking. In APGV '07: Proceedings of the 4th symposium on Applied perception in graphics and visualization, pages 57--60, New York, NY, USA, 2007. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. A. Liu, S. Tharp, L. Lai, French, and L. Stark. Some of what one needs to know about using head-mounted displays to improve teleoperator performance. IEEE Transactions on Robotics and Automation, 9(5):638--648, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  67. G. Liu, E. Austen, K. Booth, B. Fischer, M. Rempel, and J. Enns. Multiple object tracking is based on scene, not retinal, coordinates. Journal of Experimental Psychology: Human Perception and Performance, 31(2):235--247, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  68. G. R. Loftus and N. H. Mackworth. Cognitive determinants of fixation location during picture viewing. Educational Psychology: Human Perception and Performance, 4(4):565--572, 1978.Google ScholarGoogle ScholarCross RefCross Ref
  69. A. Mack and I. Rock. Inattentional Blindness. MIT Press, Menlo Park, California, 2000.Google ScholarGoogle Scholar
  70. G. W. Maconcie and L. C. Loschky. Human performance with a gaze linked multi-resolutional display. In Proceedings of the Advanced Displays and Interactive Displays First Annual Symposium 1997, pages 25--34, 1997.Google ScholarGoogle Scholar
  71. K. Mania, A. Robinson, and K. Brandt. The effect of memory schemata on object recognition in virtual environments. Presence, Teleoperators and Virtual Environments, 14(5):606--615, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. K. Mania, T. Troscianko, R. Hawkes, and A. Chalmers. Fidelity metrics for virtual environment simulations based on human judgments of spatial memory awareness states. Presence, Teleoperators and Virtual Environments, 12(3):296--310, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Katerina Mania, Bernard D. Adelstein, Stephen R. Ellis, and Michael I. Hill. Perceptual sensitivity to head tracking latency in virtual environments with varying degrees of scene complexity. In APGV '04: Proceedings of the 1st Symposium on Applied perception in graphics and visualization, pages 39--47, New York, NY, USA, 2004. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Katerina Mania, Shahrul Badariah, Matthew Coxon, and Phil Watten. Cognitive transfer of spatial awareness states from immersive virtual environments to reality. ACM Trans. Appl. Percept., 7(2):1--14, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Katerina Mania, Dave Wooldridge, Matthew Coxon, and Andrew Robinson. The effect of visual and interaction fidelity on spatial cognition in immersive virtual environments. IEEE Trans. Vis. Comput. Graph., 12(3):396--404, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Rafal Mantiuk, Karol Myszkowski, and Hans-Peter Seidel. A perceptual framework for contrast processing of high dynamic range images. In APGV '05: Proceedings of the 2nd symposium on Applied perception in graphics and visualization, pages 87--94, New York, NY, USA, 2005. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. G Marmitt and A. Duchowski. Modeling visual attention in vr: measuring the accuracy of predicted scanpaths. Proceedings of Eurographics 2002, Short Presentations, pages 217--226, 2002.Google ScholarGoogle Scholar
  78. Jeffrey McCandless, Stephen R. Ellis, and Bernard D. Adelstein. Localization of a time-delayed, monocular virtual object superimposed on a real environment. Presence, 9(1):15--24, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. B. H. McCormick, T. A. DeFanti, and M. D. Brown. Visualization in scientific computing. Computer Graphics, 21(6):1--14, 1987.Google ScholarGoogle Scholar
  80. A. McNamara. Evaluating image quality metrics vs. human evaluation. ACM SIGGRAPH 2000 Sketches Program, 2000.Google ScholarGoogle Scholar
  81. Ann McNamara. Visual perception in realistic image synthesis. Comput. Graph. Forum, 20(4):211--224, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  82. Ann McNamara. Visual perception in realistic image synthesis. Comput. Graph. Forum, 20(4):211--224, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  83. Michael Meehan, Sharif Razzaque, Mary C. Whitton, and Frederick P. Brooks, Jr. Effect of latency on presence in stressful virtual environments. In VR '03: Proceedings of the IEEE Virtual Reality 2003, page 141, Washington, DC, USA, 2003. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. G. W. Meyer and A. Liu. Color spatial acuity control of a screen subdivision image synthesis algorithm. Human Vision, Visual Processing, and Digital Display, 1666(3):387--399, 1992.Google ScholarGoogle Scholar
  85. Don P. Mitchell. Generating antialiased images at low sampling densities. Computer Graphics, 21(4):65--72, July 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Yann Morvan and Carol O'Sullivan. A perceptual approach to trimming unstructured lumigraphs. In APGV '07: Proceedings of the 4th symposium on Applied perception in graphics and visualization, pages 61--68, New York, NY, USA, 2007. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. N. Mourkoussis, F. Rivera, T. Troscianko, T. Dixon, R. Hawkes, and K. Mania. Quantifying fidelity for virtual environment simulations employing memory schema assumptions. ACM Transactions on Applied Perception, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. K. Myszkowski. The visible differences predictor: Applications to global illumination problems. In G. Drettakis and N. Max, editors, Rendering Techniques '98 (Proceedings of Eurographics Rendering Workshop '98), pages 233--236, New York, NY, 1998. Springer Wien.Google ScholarGoogle Scholar
  89. K. Myszkowski, A. B. Khodulev, and E. A. Kopylov. Validating global illumination algorithms and software. In Visual Proceedings, Technical Sketch at ACM Siggraph 1997, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. U. Neisser. The control of information pickup in selective looking. In A. D. Pick, editor, Perception and its Development: A Tribute to Eleanor J. Gibson, pages 201--219. Lawrence Erlbaum and Associates, Hilsdale, New Jersey, 1979.Google ScholarGoogle Scholar
  91. K. Nemire, R. H. Jacoby, and S. R. Ellis. Simulation fidelity of a virtual environment display. Human Factors, 36(1):1994, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  92. Carol O'Sullivan, Sarah Howlett, Yann Morvan, Rachel McDonnell, and Keith O'Conor. Perceptually Adaptive Graphics. In Christophe Schlick and Werner Purgathofer, editors, STAR-Proceedings of Eurographics 2004, number STAR-6 in State of the Art Reports, pages 141--164. INRIA and the Eurographics Association, 2004.Google ScholarGoogle Scholar
  93. A. J. Parkin, J. M. Gardiner, and R. Rosser. Functional aspects of recollective experience in face recognition. Consciousness and Cognition, 4(4):387--398, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  94. S. N. Pattanaik, J. A. Ferwerda, D. A. Greenberg, and M. D. Fairchild. A multiscale model of adaptation and spatial vision for realistic imaging. In Computer Graphics (ACM SIGGRAPH '98 Proceedings), pages 287--298, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Bobby Program Chair-Bodenheimer, Carol Program Chair-O'Sullivan, Katerina Conference Chair-Mania, and Bernhard Conference Chair-Riecke. Apgv '09: Proceedings of the 6th symposium on applied perception in graphics and visualization. Chania, Crete, Greece, 2009.Google ScholarGoogle Scholar
  96. Sarah Program Chair-Creem-Regehr and Karol Program Chair-Myszkowski. Apgv '08: Proceedings of the 5th symposium on applied perception in graphics and visualization. Los Angeles, California, 2008.Google ScholarGoogle Scholar
  97. P. Rademacher, J. Lengyel, E. Cutrell, and T. Whitted. Measuring the perception of visual realism in images, 2001.Google ScholarGoogle Scholar
  98. Ganesh Ramanarayanan, Kavita Bala, and James A. Ferwerda. Perception of complex aggregates. In SIGGRAPH '08: ACM SIGGRAPH 2008 papers, pages 1--10, New York, NY, USA, 2008. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. Ganesh Ramanarayanan, James Ferwerda, Bruce Walter, and Kavita Bala. Visual equivalence: towards a new standard for image fidelity. In SIGGRAPH '07: ACM SIGGRAPH 2007 papers, page 76, New York, NY, USA, 2007. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. Mahesh Ramasubramanian, Sumanta N. Pattanaik, and Donald P. Greenberg. A perceptually based physical error metric for realistic image synthesis. In SIGGRAPH '99: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pages 73--82, New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. J. E. Raymond, K. L. Shapiro, and K. M. Arnell. Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception & Performance, 18(3):849--860, 1992.Google ScholarGoogle Scholar
  102. Matthew J. P. Regan, Gavin S. P. Miller, Steven M. Rubin, and Chris Kogelnik. A real-time low-latency hardware light-field renderer. In SIGGRAPH '99: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pages 287--290, New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co. Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Erik Reinhard, Michael Stark, Peter Shirley, and James Ferwerda. Photographic tone reproduction for digital images. In SIGGRAPH '02: Proceedings of the 29th annual conference on Computer graphics and interactive techniques, pages 267--276, New York, NY, USA, 2002. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. R. A. Rensink, J. K. O'Regan, and J. J. Clark. To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8:368--373, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  105. Ronald A. Rensink. Seeing, sensing, and scrutinizing. Vision Research, 40(10--12):1469--1487, 2000.Google ScholarGoogle Scholar
  106. James C. Rodger and Roger A. Browse. Choosing rendering parameters for effective communication of 3d shape. IEEE Computer Graphics and Applications, 20(2):20--28, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. Thomas B. Sheridan. Remote manipulative control with transmission delay. IEEE Transactions on Human Factors in Electronics, 4(1):25--29, 1963.Google ScholarGoogle Scholar
  108. Thomas B. Sheridan. Musings on telepresence and virtual presence. Presence, 1(1):120--125, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. D. J. Simons and R. A. Rensink. Change blindness: Past, present, and future. Trends in Cognitive Science, 9(1):16--20, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  110. Daniel J. Simons. Current approaches to change blindness. Visual Cognition, 7(1/2/3):1--15, 2000.Google ScholarGoogle Scholar
  111. P. H. Smith and J. Van Rosendale. Data and visualization corridors report on the 1998 CVD workshop series (sponsored by DOE and NSF). Technical Report CACR-164, Center for Advanced Computing Research, California Institute of Technology, 1998.Google ScholarGoogle Scholar
  112. William A. Stokes, James A. Ferwerda, Bruce J. Walter, and Donald P. Greenberg. Perceptual illumination compone high quality global illumination rendering. ACM Transactions on Graphics, 23(3):742--749, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. Veronica Sundstedt, Efstathios Stavrakis, Michael Wimmer, and Erik Reinhard. A psychophysical study of fixation behavior in a computer game. In APGV '08: Proceedings of the 5th symposium on Applied perception in graphics and visualization, pages 43--50, New York, NY, USA, 2008. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. J. J. Thomas and K. A. Cook. Illuminating the Path: Research and Development Agenda for Visual Analytics. IEEE Press, Piscataway, New Jersey, 2005.Google ScholarGoogle Scholar
  115. A. Treisman. Preattentive processing in vision. Computer Vision, Graphics, and Image Processing, 31:156--177, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. A. Treisman. Search, similarity, and integration of features between and within dimensions. Journal of Experimental Psychology: Human Perception & Performance, 17(3):652--676, 1991.Google ScholarGoogle Scholar
  117. A. Treisman and S. Gormican. Feature analysis in early vision: Evidence from search asymmetries. Psychological Review, 95(1):15--48, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  118. E. Tulving. Elements of Episodic Memory. Oxford: Oxford Science Publications, 1992.Google ScholarGoogle Scholar
  119. Jack Tumblin and Holly E. Rushmeier. Tone Reproduction for Realistic Images. IEEE Computer Graphics and Applications, 13(6):42--48, November 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. S. Uno and M. Slater. The sensitivity of presence to collision response. In VRAIS '97: Proceedings of the 1997 Virtual Reality Annual International Symposium (VRAIS '97), page 95, Washington, DC, USA, 1997. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. C. J. van den Branden Lambrecht. Perceptual models and architectures for video coding applications. PhD thesis, Ecole Polytechnique Federal de Lausanne, 1996.Google ScholarGoogle Scholar
  122. David Waller, Earl Hunt, and David Knapp. The transfer of spatial knowledge in virtual environment training. Presence: Teleoper. Virtual Environ., 7(2):129--143, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. B. J. Walter. Density estimation techniques for global illumination. Ph.D. thesis, Cornell University, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. Leonard Wanger. The effect of shadow quality on the perception of spatial relationships in computer generated imagery. In I3D '92: Proceedings of the 1992 symposium on Interactive 3D graphics, pages 39--42, New York, NY, USA, 1992. ACM. Google ScholarGoogle Scholar
  125. Colin Ware. Information Visualization: Perception for Design, 2nd Edition. Morgan Kaufmann Publishers, Inc., San Francisco, California, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. Benjamin Watson, Neff Walker, Larry F. Hodges, and Martin Reddy. An evaluation of level of detail degradation in head-mounted display peripheries. Presence, 6(6):630--637, 1997.Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. Benjamin Watson, Neff Walker, Peter Woytiuk, and William Ribarsky. Maintaining usability during 3d placement despite delay. In VR '03: Proceedings of the IEEE Virtual Reality 2003, page 133, Washington, DC, USA, 2003. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. R. B. Welch, T. T. Blackmon, A. Liu, B. A. Mellers, and L. W. Stark. The effects of pictorial realism, delay of visual feedback and observer interactivity on the subjective sense of presence. Presence, Teleoperators and Virtual Environments, 5(3):263--273, 1996.Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. Betsy Williams, Gayathri Narasimham, Claire Westerman, John Rieser, and Bobby Bodenheimer. Functional similarities in spatial representations between real and virtual environments. ACM Trans. Appl. Percept., 4(2):12, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. Jeremy M. Wolfe. Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1(2):202--238, 1994.Google ScholarGoogle Scholar
  131. Jeremy M. Wolfe and Kyle R. Cave. Deploying visual attention: The Guided Search model. In T. Troscianko and A. Blake, editors, AI and the Eye, pages 79--103. John Wiley & Sons, Inc., Chichester, United Kingdom, 1989.Google ScholarGoogle Scholar
  132. Jeremy M. Wolfe, Kyle R. Cave, and Susan L. Franzel. Guided Search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception & Performance, 15(3):419--433, 1989.Google ScholarGoogle Scholar
  133. P Zimmons. The Influence of Lighting Quality on Presence and task Performance in Virtual Environment, Unpublished PhD thesis. PhD thesis, University of North Carolina, ftp://ftp.cs.unc.edu/pub/publications/techreports/04-017.pdf, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. Alexandros Zotos, Katerina Mania, and Nicholaos Mourkoussis. A schema-based selective rendering framework. In APGV '09: Proceedings of the 6th Symposium on Applied Perception in Graphics and Visualization, pages 85--92, New York, NY, USA, 2009. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. Aks, D. J., and Enns, J. T. Visual search for size is influenced by a background texture gradient. Journal of Experimental Psychology: Perception and Performance 22, 6 (1996), 1467--1481.Google ScholarGoogle ScholarCross RefCross Ref
  136. Banks, W. P., and Prinzmetal, W. Configurational effects in visual information processing. Perception & Psychophysics 19 (1976), 361--367.Google ScholarGoogle ScholarCross RefCross Ref
  137. Bauer, B., Jolicoeur, P., and Cowan, W. B. Visual search for colour targets that are or are not linearly-separable from distractors. Vision Research 36 (1996), 1439--1446.Google ScholarGoogle ScholarCross RefCross Ref
  138. Bauer, B., Jolicoeur, P., and Cowan, W. B. The linear separability effect in color visual search: Ruling out the additive color hypothesis. Perception & Psychophysics 60, 6 (1998), 1083--1093.Google ScholarGoogle ScholarCross RefCross Ref
  139. Bergman, L. D., Rogowitz, B. E., and Treinish, L. A. A rule-based tool for assisting colormap selection. In Proceedings Visualization '95 (Atlanta, Georgia, 1995), pp. 118--125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  140. Bruckner, L. A. On Chernoff faces. In Graphical Representation of Multivariate Data, P. C. C. Wang, Ed. Academic Press, New York, New York, 1978, pp. 93--121.Google ScholarGoogle ScholarCross RefCross Ref
  141. Callaghan, T. C. Dimensional interaction of hue and brightness in preattentive field segregation. Perception & Psychophysics 36, 1 (1984), 25--34.Google ScholarGoogle ScholarCross RefCross Ref
  142. Callaghan, T. C. Interference and domination in texture segregation: Hue, geometric form, and line orientation. Perception & Psychophysics 46, 4 (1989), 299--311.Google ScholarGoogle ScholarCross RefCross Ref
  143. Callaghan, T. C. Interference and dominance in texture segregation. In Visual Search, D. Brogan, Ed. Taylor & Francis, New York, New York, 1990, pp. 81--87.Google ScholarGoogle Scholar
  144. Chernoff, H. The use of faces to represent points in kdimensional space graphically. Journal of the American Statistical Association 68, 342 (1973), 361--367.Google ScholarGoogle ScholarCross RefCross Ref
  145. CIE. CIE Publication No. 15, Supplement Number 2 (E-1.3.1): Official Recommendations on Uniform Color Spaces, Color-Difference Equations, and Metric Color Terms. Commission Internationale de L'Èclairge, 1976.Google ScholarGoogle Scholar
  146. Coren, S., and Hakstian, A. R. Color vision screening without the use of technical equipment: Scale development and cross-validation. Perception & Psychophysics 43 (1988), 115--120.Google ScholarGoogle ScholarCross RefCross Ref
  147. Cutting, J. E., and Millard, R. T. Three gradients and the perception of flat and curved surfaces. Journal of Experimental Psychology: General 113, 2 (1984), 198--216.Google ScholarGoogle ScholarCross RefCross Ref
  148. D'Zmura, M. Color in visual search. Vision Research 31, 6 (1991), 951--966.Google ScholarGoogle ScholarCross RefCross Ref
  149. Egeth, H. E., and Yantis, S. Visual attention: Control, representation, and time course. Annual Review of Psychology 48 (1997), 269--297.Google ScholarGoogle ScholarCross RefCross Ref
  150. Foley, J., and Ribarsky, W. Next-generation data visualization tools. In Scientific Visualization: Advances and Challenges, L. Rosenblum, Ed. Academic Press, San Diego, California, 1994, pp. 103--127.Google ScholarGoogle Scholar
  151. Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F. Computer Graphics: Principles and Practice. Addison-Wesley Publishing Company, Reading, Massachusetts, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  152. Glassner, A. S. Principles of Digital Image Synthesis. Morgan Kaufmann Publishers, Inc., San Francisco, California, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  153. Grinstein, G., Pickett, R., and Williams, M. EXVIX: An exploratory data visualization environment. In Proceedings Graphics Interface '89 (London, Canada, 1989), pp. 254--261.Google ScholarGoogle Scholar
  154. Hallett, P. E. Segregation of mesh-derived textures evaluated by resistance to added disorder. Vision Research 32, 10 (1992), 1899--1911.Google ScholarGoogle ScholarCross RefCross Ref
  155. Haralick, R. M., Shanmugam, K., and Dinstein, I. Textural features for image classification. IEEE Transactions on System, Man, and Cybernetics SMC-3, 6 (1973), 610--621.Google ScholarGoogle ScholarCross RefCross Ref
  156. Healey, C. G. Choosing effective colours for data visualization. In Proceedings Visualization '96 (San Francisco, California, 1996), pp. 263--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  157. Healey, C. G. Building a perceptual visualisation architecture. Behaviour and Information Technology (in press) (1998).Google ScholarGoogle Scholar
  158. Healey, C. G., Booth, K. S., and Enns, J. T. Real-time multivariate data visualization using preattentive processing. ACM Transactions on Modeling and Computer Simulation 5, 3 (1995), 190--221. Google ScholarGoogle ScholarDigital LibraryDigital Library
  159. Healey, C. G., and Enns, J. T. Building perceptual textures to visualize multidimensional datasets. In Proceedings Visualization '98 (Research Triangle Park, North Carolina, 1998), pp. 111--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  160. Interrante, V. Illustrating surface shape in volume data via principle direction-driven 3d line integral convolution. In SIGGRAPH 97 Conference Proceedings (Los Angeles, California, 1997), T. Whitted, Ed., pp. 109--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  161. Julész, B. Textons, the elements of texture perception, and their interactions. Nature 290 (1981), 91--97.Google ScholarGoogle ScholarCross RefCross Ref
  162. Julész, B. A theory of preattentive texture discrimination based on first-order statistics of textons. Biological Cybernetics 41 (1981), 131--138.Google ScholarGoogle ScholarCross RefCross Ref
  163. Julész, B. A brief outline of the texton theory of human vision. Trends in Neuroscience 7, 2 (1984), 41--45.Google ScholarGoogle ScholarCross RefCross Ref
  164. Julész, B., and Bergen, J. R. Textons, the fundamental elements in preattentive vision and perception of textures. The Bell System Technical Journal 62, 6 (1983), 1619--1645.Google ScholarGoogle ScholarCross RefCross Ref
  165. Kawai, M., Uchikawa, K., and Ujike, H. Influence of color category on visual search. In Annual Meeting of the Association for Research in Vision and Ophthalmology (Fort Lauderdale, Florida, 1995), p. #2991.Google ScholarGoogle Scholar
  166. Laidlaw, D. H., Ahrens, E. T., Kremers, D., Avalos, M. J., Jacobs, R. E., and Readhead, C. Visualizing diffusion tensor images of the mouse spinal cord. In Proceedings Visualization '98 (Research Triangle Park, North Carolina, 1998), pp. 127--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  167. Levkowitz, H. Color icons: Merging color and texture perception for integrated visualization of multiple parameters. In Proceedings Visualization '91 (San Diego, California, 1991), pp. 164--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  168. Levkowitz, H., and Herman, G. T. Color scales for image data. IEEE Computer Graphics & Applications 12, 1 (1992), 72--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  169. Liu, F., and Picard, R. W. Periodicity, directionality, and randomness: Wold features for perceptual pattern recognition. In Proceedings 12th International Conference on Pattern Recognition (Jerusalem, Israel, 1994), pp. 1--5.Google ScholarGoogle Scholar
  170. Mack, A., and Rock, I. Inattentional Blindness. MIT Press, Menlo Park, California, 1998.Google ScholarGoogle Scholar
  171. Malik, J., and Perona, P. Preattentive texture discrimination with early vision mechanisms. Journal of the Optical Society of America A 7, 5 (1990), 923--932.Google ScholarGoogle ScholarCross RefCross Ref
  172. Meier, B. J. Painterly rendering for animation. In SIGGRAPH 96 Conference Proceedings (New Orleans, Louisiana, 1996), H. Rushmeier, Ed., pp. 477--484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  173. Rao, A. R., and Lohse, G. L. Identifying high level features of texture perception. CVGIP: Graphics Models and Image Processing 55, 3 (1993), 218--233. Google ScholarGoogle ScholarDigital LibraryDigital Library
  174. Rao, A. R., and Lohse, G. L. Towards a texture naming system: Identifying relevant dimensions of texture. In Proceedings Visualization '93 (San Jose, California, 1993), pp. 220--227. Google ScholarGoogle ScholarDigital LibraryDigital Library
  175. Reed, T. R., and Hans Du Buf, J. M. A review of recent texture segmentation and feature extraction techniques. CVGIP: Image Understanding 57, 3 (1993), 359--372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  176. Rensink, R. A., O'Regan, J. K., and Clark, J. J. To see or not to see: The need for attention to perceive changes in scenes. Psychological Science 8 (1997), 368--373.Google ScholarGoogle ScholarCross RefCross Ref
  177. Rheingans, P., and Tebbs, B. A tool for dynamic explorations of color mappings. Computer Graphics 24, 2 (1990), 145--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  178. Robertson, P. K. Visualizing color gamuts: A user interface for the effective use of perceptual color spaces in data displays. IEEE Computer Graphics & Applications 8, 5 (1988), 50--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  179. Rogowitz, B. E., and Treinish, L. A. An architecture for rule-based visualization. In Proceedings Visualization '93 (San Jose, California, 1993), pp. 236--243. Google ScholarGoogle ScholarDigital LibraryDigital Library
  180. Salisbury, M., Wong, M. T., Hughes, J. F., and Salesin, D. H. Orientable textures for image-based pen-and-ink illustration. In SIGGRAPH 97 Conference Proceedings (Los Angeles, California, 1997), T. Whitted, Ed., pp. 401--406. Google ScholarGoogle ScholarDigital LibraryDigital Library
  181. Schweitzer, D. Artificial texturing: An aid to surface visualization. Computer Graphics (SIGGRAPH 83 Conference Proceedings) 17, 3 (1983), 23--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  182. Simon, D. J., and Levin, D. T. Change blindness. Trends in Cognitive Science 1 (1997), 261--267.Google ScholarGoogle ScholarCross RefCross Ref
  183. Snowden, R. J. Texture segregation and visual search: A comparison of the effects of random variations along irrelevant dimensions. Journal of Experimental Psychology: Human Perception and Performance 24, 5 (1998), 1354--1367.Google ScholarGoogle ScholarCross RefCross Ref
  184. Tamura, H., Mori, S., and Yamawaki, T. Textural features corresponding to visual perception. IEEE Transactions on Systems, Man, and Cybernetics SMC-8, 6 (1978), 460--473.Google ScholarGoogle ScholarCross RefCross Ref
  185. Triesman, A. Preattentive processing in vision. Computer Vision, Graphics and Image Processing 31 (1985), 156--177. Google ScholarGoogle ScholarDigital LibraryDigital Library
  186. Triesman, A. Search, similarity, and integration of features between and within dimensions. Journal of Experimental Psychology: Human Perception & Performance 17, 3 (1991), 652--676.Google ScholarGoogle Scholar
  187. Triesman, A., and Gormican, S. Feature analysis in early vision: Evidence from search asymmetries. Psychological Review 95, 1 (1988), 15--48.Google ScholarGoogle Scholar
  188. Turk, G., and Banks, D. Image-guided streamline placement. In SIGGRAPH 96 Conference Proceedings (New Orleans, Louisiana, 1996), H. Rushmeier, Ed., pp. 453--460. Google ScholarGoogle ScholarDigital LibraryDigital Library
  189. Ware, C. Color sequences for univariate maps: Theory, experiments, and principles. IEEE Computer Graphics & Applications 8, 5 (1988), 41--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  190. Ware, C., and Beatty, J. C. Using colour dimensions to display data dimensions. Human Factors 30, 2 (1988), 127--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  191. Ware, C., and Knight, W. Using visual texture for information display. ACM Transactions on Graphics 14, 1 (1995), 3--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  192. Wolfe, J. M. Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin & Review 1, 2 (1994), 202--238.Google ScholarGoogle Scholar
  193. Wolfe, J. M., Yu, K. P., Stewart, M. I., Shorter, A. D., Friedman-Hill, S. R., and Cave, K. R. Limitations on the parallel guidance of visual search: Color x color and orientation x orientation conjunctions. Journal of Experimental Psychology: Human Perception & Performance 16, 4 (1990), 879--892.Google ScholarGoogle Scholar
  194. Wyszecki, G., and Stiles, W. S. Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition. John Wiley & Sons, Inc., New York, New York, 1982.Google ScholarGoogle Scholar
  195. Aks, D. J. and Enns, J. T. 1996. Visual search for size is influenced by a background texture gradient. J. Experiment. Psych.: Human Percept. Perf. 22, 6, 1467--1481.Google ScholarGoogle Scholar
  196. Bergman, L. D., Rogowitz, B. E., and Treinish, L. A. 1995. A rule-based tool for assisting colormap selection. In Proceedings of Visualization '95 (Atlanta, Ga.). 118--125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  197. Birren, F. 1969. Munsell: A Grammar of Color. Van Nostrand Reinhold Company, New York, New York.Google ScholarGoogle Scholar
  198. Brown, R. 1978. Impressionist technique: Pissarro's optical mixture. In Impressionism in Perspective, B. E. White, Ed. Prentice-Hall, Inc., Englewood Cliffs, N. J., 114--121.Google ScholarGoogle Scholar
  199. Callaghan, T. C. 1990. Interference and dominance in texture segregation. In Visual Search, D. Brogan, Ed. Taylor & Francis, New York, 81--87.Google ScholarGoogle Scholar
  200. Chevreul, M. E. 1967. The Principles of Harmony and Contrast of Colors and Their Applications to the Arts. Reinhold Publishing Corporation, New York.Google ScholarGoogle Scholar
  201. CIE. 1978. CIE Publication No. 15, Supplement Number 2 (E-1.3.1, 1971): Official Recommendations on Uniform Color Spaces, Color-Difference Equations, and Metric Color Terms. Commission Internationale de L'Èclairge.Google ScholarGoogle Scholar
  202. Coren, S., Ward, L. M., and Enns, J. T. 2003. Sensation and Perception (6th Edition). Wiley, New York, New York.Google ScholarGoogle Scholar
  203. Curtis, C. J., Anderson, S. E., Seims, J. E., Fleischer, K. W., and Salesin, D. H. 1997. Computer-generated watercolor. In SIGGRAPH 97 Conference Proceedings (Los Angeles, Calif.). T. Whitted, Ed. ACM, New York, 421--430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  204. Cutting, J. E. and Millard, R. T. 1984. Three gradients and the perception of flat and curved surfaces. J. Experiment. Psych.: General 113, 2, 198--216.Google ScholarGoogle Scholar
  205. Ebert, D. and Rheingans, P. 2000. Volume illustration: Non-photorealistic rendering of volume models. In Proceedings of Visualization 2000 (San Francisco, Calif.). 195--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  206. Egeth, H. E. and Yantis, S. 1997. Visual attention: Control, representation, and time course. Ann. Rev. Psychol. 48, 269--297.Google ScholarGoogle ScholarCross RefCross Ref
  207. Finkelstein, A. and Salesin, D. H. 1994. Multiresolution curves. In SIGGRAPH 94 Conference Proceedings (Orlando, Fla.). A. S. Glassner, Ed. ACM, New York, 261--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  208. Gooch, B., Coombe, G., and Shirley, P. 2002. Artistic vision: Painterly rendering using computer vision techniques. In Proceedings of the NPAR 2002 Symposium on Non-Photorealistic Animation and Rendering (Annecy, France). 83--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  209. Gooch, B. and Gooch, A. 2001. Non-Photorealistic Rendering. A K Peters, Ltd., Natick, Mass. Google ScholarGoogle ScholarDigital LibraryDigital Library
  210. Grinstein, G., Pickett, R., and Williams, M. 1989. EXVIS: An exploratory data visualization environment. In Proceedings of Graphics Interface '89 (London, Ont., Canada). 254--261.Google ScholarGoogle Scholar
  211. Haberli, P. 1990. Paint by numbers: Abstract image representations. Comput. Graph. (SIGGRAPH 90 Conference Proceedings) 24, 4, 207--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  212. Haberli, P. and Segal, M. 1993. Texture mapping as a fundamental drawing primative. In Proceedings of the 4th Eurographics Workshop on Rendering (Paris, France). M. Cohen, C. Puech, and F. Sillion, Eds. 259--266.Google ScholarGoogle Scholar
  213. Haralick, R. M., Shanmugam, K., and Dinstein, I. 1973. Textural features for image classiffication. IEEE Trans. Syst., Man, and Cybernet. SMC-3, 6, 610--621.Google ScholarGoogle Scholar
  214. Healey, C. G. 1996. Choosing effective colours for data visualization. In Proceedings of Visualization '96 (San Francisco, Calif.). 263--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  215. Healey, C. G., Booth, K. S., and Enns, J. T. 1996. High-speed visual estimation using preattentive processing. ACM Trans. Computer-Hum. Interact. 3, 2, 107--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  216. Healey, C. G. and Enns, J. T. 1998. Building perceptual textures to visualize multidimensional datasets. In Proceedings of Visualization '98 (Research Triangle Park, N. C.). 111--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  217. Healey, C. G. and Enns, J. T. 1999. Large datasets at a glance: Combining textures and colors in scientic visualization. IEEE Trans. Visual. Comput. Graph. 5, 2, 145--167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  218. Hering, E. 1964. Outlines of a Theory of Light Sense. Harvard University Press, Cambridge, Mass.Google ScholarGoogle Scholar
  219. Hertzmann, A. 1998. Painterly rendering with curved brush strokes of multiple sizes. In SIGGRAPH 98 Conference Proceedings (Orlando, Fla.). M. Cohen, Ed. ACM, New York, 453--460. Google ScholarGoogle ScholarDigital LibraryDigital Library
  220. Hertzmann, A. 2002. Fast texture maps. In Proceedings of the NPAR 2002 Symposium on Non-Photorealistic Animation and Rendering (Annecy, France). 91--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  221. Hertzmann, A., Jacobs, C. E., Oliver, N., Curless, B., and Salesin, D. H. 2001. Image analogies. In SIGGRAPH 2001 Conference Proceedings (Los Angeles, Calif.). E. Fiume, Ed. ACM, New York, 327--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  222. Hsu, S. C. and Lee, I. H. H. 1994. Drawing and animation using skeletal strokes. In SIGGRAPH 94 Conference Proceedings (Orlando, Fla.). A. Glassner, Ed. ACM, New York, 109--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  223. Interrante, V. 2000. Harnessing natural textures for multivariate visualization. IEEE Comput. Graph. Applic. 20, 6, 6--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  224. Julész, B. 1975. Experiments in the visual perception of texture. Scient. Amer. 232, 34--43.Google ScholarGoogle Scholar
  225. Julész, B. 1984. A brief outline of the texton theory of human vision. Trends Neurosci. 7, 2, 41--45.Google ScholarGoogle Scholar
  226. Julész, B., Gilbert, E. N., and Shepp, L. A. 1973. Inability of humans to discriminate between visual textures that agree in second-order statistics---revisited. Perception 2, 391--405.Google ScholarGoogle ScholarCross RefCross Ref
  227. Julész, B., Gilbert, E. N., and Victor, J. D. 1978. Visual discrimination of textures with identical third-order statistics. Biologic. Cybernet. 31, 137--140.Google ScholarGoogle ScholarDigital LibraryDigital Library
  228. Kirby, R. M., Marmanis, H., and Laidlaw, D. H. 1999. Visualizing multivalued data from 2D incompressible flows using concepts from painting. In Proceedings of Visualization '99 (San Francisco, Calif.). 333--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  229. Laidlaw, D. H. 2001. Loose, artistic "textures" for visualization. IEEE Comput. Graph. Applic. 21, 2, 6--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  230. Laidlaw, D. H., Ahrens, E. T., Kremers, D., Avalos, M. J., Jacobs, R. E., and Readhead, C. 1998. Visualizing diffusion tensor images of the mouse spinal cord. In Proceedings of Visualization '98 (Research Triangle Park, N. C.). 127--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  231. Lewis, J.-P. 1984. Texture synthesis for digital painting. Comput. Graph. (SIGGRAPH 84 Proceedings) 18, 3, 245--252. Google ScholarGoogle ScholarDigital LibraryDigital Library
  232. Litwinowicz, P. 1997. Processing images and video for an impressionist effect. In SIGGRAPH 97 Conference Proceedings (Los Angeles, Calif.). T. Whitted, Ed. ACM, New York, 407--414. Google ScholarGoogle ScholarDigital LibraryDigital Library
  233. Liu, G., Healey, C. G., and Enns, J. T. 2003. Target detection and localization in visual search: A dual systems perspective. Percept. Psychophys. 65, 5, 678--694.Google ScholarGoogle Scholar
  234. Lu, A., Morris, C. J., Ebert, D. S., Rheingans, P., and Hansen, C. 2002. Non-photorealistic volume rendering using stippling techniques. In Proceedings of Visualization 2002 (Boston, Mass.). 211--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  235. MacEachren, A. M. 1995. How Maps Work. Guilford Publications, Inc., New York.Google ScholarGoogle Scholar
  236. Mack, A. and Rock, I. 1998. Inattentional Blindness. MIT Press, Menlo Park, Calif.Google ScholarGoogle Scholar
  237. McCormick, B. H., DeFanti, T. A., and Brown, M. D. 1987. Visualization in scientific computing. Comput. Graph. 21, 6, 1--14.Google ScholarGoogle Scholar
  238. Meier, B. J. 1996. Painterly rendering for animation. In SIGGRAPH 96 Conference Proceedings, (New Orleans, La.) H. Rushmeier, Ed. ACM, New York, 477--484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  239. Munsell, A. H. 1905. A Color Notation. Geo. H. Ellis Co., Boston, Mass.Google ScholarGoogle Scholar
  240. Pomerantz, J. and Pristach, E. A. 1989. Emergent features, attention, and perceptual glue in visual form perception. J. Experiment. Psych.: Human Percept. Perf. 15, 4, 635--649.Google ScholarGoogle Scholar
  241. Posner, M. I. and Raichle, M. E. 1994. Images of mind. Scientific American Library.Google ScholarGoogle Scholar
  242. Ramachandran, V. S. and Hirstein, W. 1999. The science of art: A neurological theory of aesthetic experience. J. of Conscious. Stud. 6, 6--7, 15--51.Google ScholarGoogle Scholar
  243. Rao, A. R. and Lohse, G. L. 1993a. Identifying high level features of texture perception. CVGIP: Graph. Models Image Process. 55, 3, 218--233. Google ScholarGoogle ScholarDigital LibraryDigital Library
  244. Rao, A. R. and Lohse, G. L. 1993b. Towards a texture naming system: Identifying relevant dimensions of texture. In Proceedings of Visualization '93 (San Jose, Calif.). 220--227. Google ScholarGoogle ScholarDigital LibraryDigital Library
  245. Rensink, R. A. 2000. Seeing, sensing, and scrutinizing. Vision Res. 40, 10--12, 1469--1487.Google ScholarGoogle Scholar
  246. Rheingans, P. and Ebert, D. 2001. Volume illustration: Nonphotorealistic rendering of volume models. IEEE Trans. Vis. Comput. Graph. 7, 3, 253--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  247. Rheingans, P. and Tebbs, B. 1990. A tool for dynamic explorations of color mappings. Comput. Graph. 24, 2, 145--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  248. Rogowitz, B. E. and Treinish, L. A. 1993. An architecture for rule-based visualization. In Proceedings of Visualization '93 (San Jose, Calif.). 236--243. Google ScholarGoogle ScholarDigital LibraryDigital Library
  249. Rood. O. N. 1879. Modern Chromatics, with Applications to Art and Industry. Appleton, New York.Google ScholarGoogle Scholar
  250. Rosenblum, L. J. 1994. Research issues in scientific visualization. IEEE Comput. Graph. Applic. 14, 2, 61--85. Google ScholarGoogle ScholarDigital LibraryDigital Library
  251. Salisbury, M., Anderson, C., Lischinski, D., and Salesin, D. H. 1996. Scale-dependent reproduction of pen-and-ink illustrations. In SIGGRAPH 96 Conference Proceedings (New Orleans, La.). H. Rushmeier, Ed. ACM, New York, 461--468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  252. Salisbury, M., Anderson, S. E., Barzel, R., and Salesin, D. H. 1994. Interactive pen-and-ink illustrations. In SIGGRAPH 94 Conference Proceedings (Orlando, Fla.). A. S. Glassner, Ed. ACM, New York, 101--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  253. Salisbury, M., Wong, M. T., Hughes, J. F., and Salesin, D. H. 1997. Orientable textures for image-based pen-and-ink illustration. In SIGGRAPH 97 Conference Proceedings (Los Angeles, Calif.). T. Whitted, Ed. ACM, New York, 401--406. Google ScholarGoogle ScholarDigital LibraryDigital Library
  254. Schapiro, M. 1997. Impressionism: Reflections and Perceptions. George Brazillier, Inc., New York.Google ScholarGoogle Scholar
  255. Shiraishi, M. and Yamaguchi, Y. 1999. Image moment-based stroke placement. In SIGGRAPH 99 Sketches & Applications (Los Angeles, Calif.). R. Kidd, Ed. ACM, New York, 247. Google ScholarGoogle ScholarDigital LibraryDigital Library
  256. Simons, D. J. 2000. Current approaches to change blindness. Vis. Cognit. 7, 1/2/3, 1--15.Google ScholarGoogle Scholar
  257. Slocum, T. A. 1998. Thematic Cartography and Visualization. Prentice-Hall, Inc., Upper Saddle River, N. J.Google ScholarGoogle Scholar
  258. Smith, P. H. and Van Rosendale, J. 1998. Data and visualization corridors report on the 1998 CVD workshop series (sponsored by DOE and NSF). Tech. Rep. CACR-164, Center for Advanced Computing Research, California Institute of Technology.Google ScholarGoogle Scholar
  259. Snowden, R. J. 1998. Texture segregation and visual search: A comparison of the effects of random variations along irrelevant dimensions. J. Experiment. Psych.: Human Percept. Perf. 24, 5, 1354--1367.Google ScholarGoogle Scholar
  260. Sousa, M. C. and Buchanan, J. W. 1999a. Computer-generated graphite pencil rendering of 3d polygon models. Comput. Graph. Forum (Proceedings Eurographics '99) 18, 3, 195--208.Google ScholarGoogle Scholar
  261. Sousa, M. C. and Buchanan, J. W. 1999b. Computer-generated pencil drawings. In Proceedings SKIGRAPH '99 (Banff, Canada).Google ScholarGoogle Scholar
  262. Sousa, M. C. and Buchanan, J. W. 2000. Observational models of graphite pencil materials. Comput. Graph. Forum 19, 1, 27--49.Google ScholarGoogle Scholar
  263. Strassmann, S. 1986. Hairy brushes. Comput. Graph. (SIGGRAPH 86 Proceedings) 20, 4, 185--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  264. Strothotte, T. and Schlechtweg, S. 2002. Non-Photorealistic Computer Graphics: Modeling, Rendering and Animation. Morgan Kaufmann, Inc., San Francisco, Calif. Google ScholarGoogle ScholarDigital LibraryDigital Library
  265. Takagi, S. and Fujishiro, I. 1997. Microscopic structural modeling of colored pencil drawings. In SIGGRAPH 97 Sketches & Applications (Los Angeles, Calif.). D. S. Ebert, Ed. ACM, New York, 187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  266. Takagi, S., Fujishiro, I., and Nakajima, M. 1999. Volumetric modeling of artistic techniques in colored pencil drawing. In SIGGRAPH 99 Sketches & Applications (Los Angeles, Calif.). R. Kidd, Ed. ACM, New York, 283. Google ScholarGoogle ScholarDigital LibraryDigital Library
  267. Tamura, H., Mori, S., and Yamawaki, T. 1978. Textural features corresponding to visual perception. IEEE Trans. Sys., Man, and Cybernet. SMC-8, 6, 460--473.Google ScholarGoogle Scholar
  268. Triesman, A. 1985. Preattentive processing in vision. Comput. Vis. Graph. Image Process. 31, 156--177. Google ScholarGoogle ScholarDigital LibraryDigital Library
  269. Triesman, A. 1991. Search, similarity, and integration of features between and within dimensions. J. Experiment. Psych.: Human Percept. Perf. 17, 3, 652--676.Google ScholarGoogle Scholar
  270. Triesman, A. and Gormican, S. 1988. Feature analysis in early vision: Evidence from search asymmetries. Psychol. Rev. 95, 1, 15--48.Google ScholarGoogle Scholar
  271. Tufte, E. R. 1983. The Visual Display of Quantitative Information. Graphics Press, Cheshire, Conn. Google ScholarGoogle ScholarDigital LibraryDigital Library
  272. Tufte, E. R. 1990. Envisioning Information. Graphics Press, Cheshire, Conn. Google ScholarGoogle ScholarDigital LibraryDigital Library
  273. Tufte, E. R. 1997. Visual Explanations: Images and Quantities, Evidence and Narrative. Graphics Press, Cheshire, Conn. Google ScholarGoogle ScholarDigital LibraryDigital Library
  274. Venturi, L. 1978. Impressionist style. In Impressionism in Perspective, B. E. White, Ed. Prentice-Hall, Inc., Englewood Cliffs, N. J., 105--113.Google ScholarGoogle Scholar
  275. Ware, C. 1988. Color sequences for univariate maps: Theory, experiments, and principles. IEEE Comput Graph. Applic. 8, 5, 41--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  276. Ware, C. 2000. Information Visualization: Perception for Design. Morgan-Kaufmann, San Francisco, Calif. Google ScholarGoogle ScholarDigital LibraryDigital Library
  277. Ware, C. and Knight, W. 1995. Using visual texture for information display. ACM Trans. Graph. 14, 1, 3--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  278. Weigle, C., Emigh, W. G., Liu, G., Taylor, R. M., Enns, J. T., and Healey, C. G. 2000. Oriented texture slivers: A technique for local value estimation of multiple scalar fields. In Proceedings of Graphics Interface 2000 (Montréal, Quebec, Canada). 163--170.Google ScholarGoogle Scholar
  279. Winkenbach, G. and Salesin, D. H. 1994. Computer-generated pen-and-ink illustration. In SIGGRAPH 94 Conference Proceedings (Orlando, Fla.). A. Glassner, Ed. ACM, New York, 91--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  280. Winkenbach, G. and Salesin, D. H. 1996. Rendering free-form surfaces in pen-and-ink. In SIGGRAPH 96 Conference Proceedings (New Orleans, La.). H. Rushmeier, Ed. ACM, New York, 469--476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  281. Wolfe, J. M. 1994. Guided Search 2.0: A revised model of visual search. Psycho. Bull. Rev. 1, 2, 202--238.Google ScholarGoogle Scholar
  282. Wolfe, J. M., Klempen, N., and Dahlen, K. 2000. Post attentive vision. J. Experiment. Psych.: Human Percept. Perf. 26, 2, 693--716.Google ScholarGoogle Scholar
  283. Zeki, S. 1999. Inner Vision. Oxford University Press, Oxford, U. K.Google ScholarGoogle Scholar
  284. Baltissen, R., and Ostermann, B. 1998. Are the dimiensions underlying aesthetic and affective judgment the same? Empirical Studies of the Arts 16, 2, 97--113.Google ScholarGoogle Scholar
  285. Barber, C., Dobkin, D., and Huhdanpaa, H. 1993. The quickhull algorithm for convex hull. Tech. Rep. TR GCG53, The Geometry Center, University of Minnesota, Minneapolis, MN.Google ScholarGoogle Scholar
  286. Barber, C., Dobkin, D., and Huhdanpaa, H. 1996. The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22, 4, 469--483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  287. Berlyne, D. 1971. Aesthetics and Psychobiology. Appleton-Century-Crofts, New York, NY.Google ScholarGoogle Scholar
  288. Birkhoff, G. 1932. Aesthetic Measure. Harvard University Press, Cambridge, MA.Google ScholarGoogle Scholar
  289. Brown, Kevin, Q. 1979. Voronoi diagrams from convex hulls. Information Processing Letters 9, 5, 223--228.Google ScholarGoogle Scholar
  290. Davis, R. 1936. An evaluation and test of birkhoff's aesthetic measure and formula. Journal of General Psychology 15, 231--240.Google ScholarGoogle Scholar
  291. Garland, M., and Heckbert, P. S. 1997. Surface simplification using quadric error metrics. In SIGGRAPH 97 Conference Proceedings, T. Whitted, Ed., 209--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  292. Garland, M., and Heckbert, P. S. 1998. Simplifying surfaces with color and texture using quadric error metrics. In Proceedings Visualization '98, 263--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  293. Garland, M. 1999. The Design, Use, and Required Facilities of an Interactive Visual Computer Simulation Language to Explore Production Planning Problems. Ph.D. thesis, Carnegie Mellon University, Pittsburg, PA.Google ScholarGoogle Scholar
  294. Grigoryan, G., and Rheingans, P. 2002. Probabilistic surfaces: Point based primitives to show uncertainty. In Proceedings Visualization 2002, 147--153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  295. Haeberli, P. 1990. Paint by numbers: Abstract image representations. Computer Graphics (SIGGRAPH 90 Conference Proceedings) 24, 4, 207--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  296. Healey, C. G., Tateosian, L., Enns, J. T., and Remple, M. 2004. Perceptually based brush strokes for nonphotorealistic visualization. ACM Trans. Graph. 23, 1, 64--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  297. Hertzmann, A. 1998. Painterly rendering with curved brush strokes of multiple sizes. In SIGGRAPH 98 Conference Proceedings, M. Cohen, Ed., 453--460. Google ScholarGoogle ScholarDigital LibraryDigital Library
  298. Hertzmann, A. 2002. Fast texture maps. In Proceedings NPAR 2002 Symposium on Non-Photorealistic Animation and Rendering, 91--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  299. Holman, D., Vertegaal, R., Sohn, C., and Cheng, D. 2004. Attentive display: paintings as attentive user interfaces. In CHI '04: Extended abstracts of the 2004 conference on Human factors and computing systems, ACM Press, 1127--1130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  300. Hsu, S. C., and Lee, I. H. H. 1994. Drawing and animation using skeletal strokes. In SIGGRAPH 94 Conference Proceedings, A. Glassner, Ed., 109--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  301. Kirby, R. M., Marmanis, H., and Laidlaw, D. H. 1999. Visualizing multivalued data from 2D incompressible flows using concepts from painting. In Proceedings Visualization '99, 333--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  302. Laidlaw, D. H., Ahrens, E. T., Kremers, D., Avalos, M. J., Jacobs, R. E., and Readhead, C. 1998. Visualizing diffusion tensor images of the mouse spinal cord. In Proceedings Visualization '98, 127--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  303. Lewis, J.-P. 1984. Texture synthesis for digital painting. Computer Graphics (SIGGRAPH 84 Proceedings) 18, 3, 245--252. Google ScholarGoogle ScholarDigital LibraryDigital Library
  304. Litwinowicz, P. 1997. Processing images and video for an impressionist effect. In SIGGRAPH 97 Conference Proceedings, T. Whitted, Ed., 407--414. Google ScholarGoogle ScholarDigital LibraryDigital Library
  305. Lu, A., Morris, C. J., Ebert, D. S., Rheingans, P., and Hansen, C. 2002. Non-photorealistic volume rendering using stippling techniques. In Proceedings Visualization 2002, 211--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  306. Meier, B. J. 1996. Painterly rendering for animation. In SIGGRAPH 96 Conference Proceedings, H. Rushmeier, Ed., 477--484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  307. Pham, B. 1991. Expressive brush strokes. Computer Vision, Graphics and Image Processing 53, 1, 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  308. Ramachandran, V. 2000. The science of art: How the brain responds to beauty. In Understanding wisdom: Sources, science, and society., W. S. Brown, Ed. Templeton Foundation Press., Philadelphia, PA.Google ScholarGoogle Scholar
  309. Rheingans, P., and Ebert, D. 2001. Volume illustration: Nonphotorealistic rendering of volume models. IEEE Transactions on Visualization and Computer Graphics 7, 3, 253--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  310. Salisbury, M., Anderson, S. E., Barzel, R., and Salesin, D. H. 1994. Interactive pen-and-ink illustrations. In SIGGRAPH 94 Conference Proceedings, A. S. Glassner, Ed., 101--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  311. Salisbury, M., Wong, M. T., Hughes, J. F., and Salesin, D. H. 1997. Orientable textures for image-based pen-and-ink illustration. In SIGGRAPH 97 Conference Proceedings, T. Whitted, Ed., 401--406. Google ScholarGoogle ScholarDigital LibraryDigital Library
  312. Secord, A. 2002. Weighted voronoi stippling. In Proceedings NPAR 2002 Symposium on Non-Photorealistic Animation and Rendering, 37--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  313. Shiraishi, M., and Yamaguchi, Y. 2000. An algorithm for automatic painterly rendering based on local source image approximation. In Proceedings NPAR 2000 Symposium on Non-Photorealistic Animation and Rendering, 53--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  314. Stompel, A., Lum, E., and Ma, K.-L. 2002. Feature-enhanced visualization of multidimensional, multivariate volume data using non-photorealistic rendering techniques. In 10th Pacific Conference on Computer Graphics and Applications, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  315. Strassmann, S. 1986. Hairy brushes. Computer Graphics (SIGGRAPH 86 Proceedings) 20, 4, 185--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  316. Tateosian, L. G. 2002. Nonphorealistic visualization of multidimensional datasets. Master's thesis, North Carolina State University.Google ScholarGoogle Scholar
  317. Walter, J. D., and Healey, C. G. 2001. Attribute preserving dataset simplification. In VIS '01: Proceedings of the conference on Visualization '01, IEEE Computer Society, 113--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  318. Wilson, B., and Ma, K.-L. 2004. Rendering complexity in computer-generated pen-and-ink illustrations. In NPAR '04: Proceedings of the 3rd international symposium on Nonphotorealistic animation and rendering, ACM Press, 129--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  319. Winkenbach, G., and Salesin, D. H. 1994. Computer-generated pen-and-ink illustration. In SIGGRAPH 94 Conference Proceedings, A. Glassner, Ed., 91--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  320. Winkenbach, G., and Salesin, D. H. 1996. Rendering parametric surfaces in pen-and-ink. In SIGGRAPH 96 Conference Proceedings, H. Rushmeier, Ed., 469--476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  321. Wooding, D. 2002. Eye movements of large populations: Ii. deriving regions of interest, coverage, and similarity using fixation maps. Behavior Research Methods, Instruments, and Computers 34, 4, 518--528.Google ScholarGoogle Scholar

Index Terms

  1. Perceptually-motivated graphics, visualization and 3D displays

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SIGGRAPH '10: ACM SIGGRAPH 2010 Courses
            July 2010
            1132 pages
            ISBN:9781450303958
            DOI:10.1145/1837101

            Copyright © 2010 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 26 July 2010

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            Overall Acceptance Rate1,822of8,601submissions,21%

            Upcoming Conference

            SIGGRAPH '24

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader