skip to main content
research-article

Geodesic image and video editing

Published:05 November 2010Publication History
Skip Abstract Section

Abstract

This article presents a new, unified technique to perform general edge-sensitive editing operations on n-dimensional images and videos efficiently.

The first contribution of the article is the introduction of a Generalized Geodesic Distance Transform (GGDT), based on soft masks. This provides a unified framework to address several edge-aware editing operations. Diverse tasks such as denoising and nonphotorealistic rendering are all dealt with fundamentally the same, fast algorithm. Second, a new Geodesic Symmetric Filter (GSF) is presented which imposes contrast-sensitive spatial smoothness into segmentation and segmentation-based editing tasks (cutout, object highlighting, colorization, panorama stitching). The effect of the filter is controlled by two intuitive, geometric parameters. In contrast to existing techniques, the GSF filter is applied to real-valued pixel likelihoods (soft masks), thanks to GGDTs and it can be used for both interactive and automatic editing. Complex object topologies are dealt with effortlessly. Finally, the parallelism of GGDTs enables us to exploit modern multicore CPU architectures as well as powerful new GPUs, thus providing great flexibility of implementation and deployment. Our technique operates on both images and videos, and generalizes naturally to n-dimensional data.

The proposed algorithm is validated via quantitative and qualitative comparisons with existing, state-of-the-art approaches. Numerous results on a variety of image and video editing tasks further demonstrate the effectiveness of our method.

Skip Supplemental Material Section

Supplemental Material

tp104_11.mp4

mp4

82.9 MB

References

  1. Agarwala, A., Dontcheva, M., Agrawala, M., Druker, A., Colburn, A., Curless, B., Salesin, D., and Cohen, M. 2004. Interactive digital photomontage. In Proceedings of ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bai, X. and Sapiro, G. 2007. A geodesic framework for fast interactive image and video segmentation and matting. In Proceedings of the IEEE International Conference on Computer Vision.Google ScholarGoogle Scholar
  3. Borgefors, G. 1986. Distance transformations in digital images. In Proceedings of Conference on Computer Vision, Graphics and Image Processing.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bousseau, A., Neyret, F., Thollot, J., and Salesin, D. 2007. Video watercolorization using bidirectional texture advection. In Proceedings of ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Boykov, J. and Jolly, M.-P. 2001. Interactive graph cuts for optimal boundary and region segmentation of objects in n-D images. In Proceedings of the IEEE International Conference on Computer Vision.Google ScholarGoogle Scholar
  6. Brown, M., Szeliski, R., and Winder, S. 2005. Multi-image matching using multi-scale oriented patches. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 510--517. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Buades, A., Coll, B., and Morel, J.-M. 2005. A non-local algorithm for image denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chen, J., Paris, J., and Durand, F. 2007. Real-time edge-aware image processing with the bilateral grid. In Proceedings of ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Couprie, C., Grady, L. amd Najman, L., and Talbot, H. 2009. Power watersheds: A new image segmentation framework extending graph cuts, random walker and optimal spanning forest. In Proceedings of the IEEE International Conference on Computer Vision.Google ScholarGoogle Scholar
  10. Criminisi, A., Cross, G., Blake, A., and kolmogorov, V. 2006. Bilayer segmentation of live video. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Criminisi, A., Sharp, T., and Blake, A. 2008. GeoS: Geodesic image segmentation. In Proceedings of the European Conference on Computer Vision. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Dijkstra, E. 1959. A note on two problems in connexion with graphs. Numer. Math. 1, 269--271.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Durand, F. and Dorsey, J. 2002. Fast bilateral filtering for the display of high-dynamic-range images. In Proceedings of ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Fabbri, R., Costa, L., Torrelli, J., and Bruno, O. 2008. 2D euclidean distance transform algorithms: A comparative survey. ACM Comput. Surv. 40, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Felsberg, M., Forssen, P.-E., and Scharr, H. 2006. Efficient robust smoothing of low-level signal features. IEEE Trans. Pattern Anal. Mach. Intell. 28, 2, 209--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Felzenszwalb, P. and Huttenlocher, D. P. 2004. Efficient belief propagation for early vision. Int. J. Comput. Vision 70, 1, 41--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Grady, L. 2006. Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28, 11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Grady, L. and Sinop, A. K. 2008. Fast approximate random walker segmentation using eigenvector precomputation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Google ScholarGoogle Scholar
  19. Heijmans, H. J. A. M. 1995. Mathematical morphology: A modern approach in image processing based on algebra and geometry. SIAM Rev. 37, 1, 1--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jones, M., Baerentzen, J., and Sramek, M. 2006. 3D distance fields: a survey of techniques and applications. IEEE Trans. Visualiz. Comput. Graph. 12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Juan, O. and Boykov, J. 2006. Active graph cuts. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kohli, P. and Torr, P. H. S. 2007. Dynamic graph cuts for efficient inference in Markov Random Fields. IEEE Trans. Pattern Anal. Mach. Intell. 29, 12, 2079--2088. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., and Rother, C. 2005. Bilayer segmentation of binocular stereo video. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kolmogorov, V. and Zabih, R. 2004. What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kopf, J., Cohen, M., Lischinski, D., and Uyttendaele, M. 2007. Joint bilateral upsampling. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Levin, A., Lischinski, D., and Weiss, Y. 2004. Colorization using optimization. ACM Trans. Graph. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Li, Y., Sun, J., Tang, C.-K., and H.-Y., S. 2004. Lazy snapping. ACM Trans. Graph. 23, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Lischinski, D., Farbman, Z., Uyttendaele, M., and Szeliski, R. 2006. Interactive local adjustment of tonal values. ACM Trans. Graph. 25, 3, 646--653. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Liu, J., Sun, J., and Shum, H.-Y. 2009. Paint selection. ACM Trans. Graph. 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Lombaert, H., Sun, Y., Grady, L., and Xu, C. 2005. A multilevel banded graph cuts method for fast image segmentation. In Proceedings of the IEEE International Conference on Computer Vision. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Luan, Q., Wen, F., Cohen-Or, D., Liang, L., Xu, Y. Q., and Shum, H. Y. 2007. Natural image colorization. In Proceedings of the Eurographics Symposium on Rendering. J. Kautz and S. Pattanaik. Eds. Eurographics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Paris, S. and Durand, F. 2009. A fast approximation of the bilateral filter. Int. J. Comput. Vision. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Perona, P. and Malik, J. 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Roth, S. and Black, M. 2005. Fields of experts: A framework for learning image priors. In Proceedings of the IEEE Computer Conference on Vision and Pattern Recognition. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Rother, C., Kolmogorov, V., and Blake, A. 2004. GrabCut: Interactive foreground extraction using iterated graph cuts. In ACM Trans. Graph. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sethian, J. A. 1999. Fast marching methods. SIAM Rev. 41, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Shotton, J., Winn, J., Rother, C., and Criminisi, A. 2007. Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling appearance, shape and context. Int. J. Comput. Vision. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Sinop, A. and Grady, L. 2007. A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm. In Proceedings of the IEEE International Conference on Computer Vision.Google ScholarGoogle Scholar
  39. Soille, P. 1999. Morphological Image Analysis. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Szeliski, R. 2006. Locally adapted hierarchical basis preconditioning. ACM Trans. Graph. 25, 3, 1135--1143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., and Rother, C. 2007. A comparative study of energy minimization methods for Markov Random Fields with smoothness-based priors. Int. J. Comput. Vision. 30, 6, 1068--1080. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Toivanen, P. J. 1996. New geodesic distance transforms for gray-scale images. Pattern Recogn. Lett. 17, 5, 437--450. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Tomasi, C. and Manduchi, R. 1998. Bilateral filtering for gray and color images. In Proceeding of the IEEE International Conference on Computer Vision. 839--846. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Wang, J., Bhat, P., Colburn, R. A., Agrawala, M., and Cohen, M. F. 2005. Interactive video cut out. ACM Trans. Graph. 24, 585--594. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Wang, J., Xu, Y., Shum, H.-Y., and Cohen, M. 2004. Video tooning. In Proceedings of ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Weber, O., Devir, Y. S., Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2008. Parallel algorithms for approximation of distance maps on parametric surfaces. In Proceedings of ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Weiss, B. 2006. Fast median and bilateral filtering. In ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Weiss, Y. and Freeman, W. T. 2007. What makes a good model of natural images? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Google ScholarGoogle Scholar
  49. Winnemoller, H., Olsen, S. C., and Gooch, B. 2006. Real time video abstraction. In Proceedings of ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Yatziv, L., Bartesaghi, A., and Sapiro, G. 2006. O(n) implementation of the fast marching algorithm. J. Computat. Phys. 212, 393--399. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Yatziv, L. and Sapiro, G. 2006. Fast image and video colorization using chrominance blending. IEEE Trans. Image Proces. 15, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Geodesic image and video editing

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 29, Issue 5
            October 2010
            58 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/1857907
            Issue’s Table of Contents

            Copyright © 2010 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 5 November 2010
            • Accepted: 1 August 2010
            • Revised: 1 April 2010
            • Received: 1 September 2008
            Published in tog Volume 29, Issue 5

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader