skip to main content
10.1145/1866158.1866187acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Video quality assessment for computer graphics applications

Published:15 December 2010Publication History

ABSTRACT

Numerous current Computer Graphics methods produce video sequences as their outcome. The merit of these methods is often judged by assessing the quality of a set of results through lengthy user studies. We present a full-reference video quality metric geared specifically towards the requirements of Computer Graphics applications as a faster computational alternative to subjective evaluation. Our metric can compare a video pair with arbitrary dynamic ranges, and comprises a human visual system model for a wide range of luminance levels, that predicts distortion visibility through models of luminance adaptation, spatiotemporal contrast sensitivity and visual masking. We present applications of the proposed metric to quality prediction of HDR video compression and temporal tone mapping, comparison of different rendering approaches and qualities, and assessing the impact of variable frame rate to perceived quality.

Skip Supplemental Material Section

Supplemental Material

References

  1. Aydin, T. O., Mantiuk, R., Myszkowski, K., and Seidel, H.-P. 2008. Dynamic range independent image quality assessment. In Proc. of ACM SIGGRAPH, vol. 27(3). Article 69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bavoil, L., Sainz, M., and Dimitrov, R. 2008. Image-space horizon-based ambient occlusion. In SIGGRAPH '08: ACM SIGGRAPH 2008 talks, ACM, New York, NY, USA, 1--1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bittner, J., Wimmer, M., Piringer, H., and Purgathofer, W. 2004. Coherent hierarchical culling: Hardware occlusion queries made useful. Computer Graphics Forum 23, 3 (Sept.), 615--624. Proceedings EUROGRAPHICS 2004.Google ScholarGoogle ScholarCross RefCross Ref
  4. Bolin, M., and Meyer, G. 1998. A perceptually based adaptive sampling algorithm. In Proc. of Siggraph '98, 299--310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dachsbacher, C., and Stamminger, M. 2005. Reflective shadow maps. In I3D '05: Proceedings of the 2005 symposium on Interactive 3D graphics and games, ACM, New York, NY, USA, 203--231. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Daly, S. 1993. The Visible Differences Predictor: An algorithm for the assessment of image fidelity. In Digital Images and Human Vision, MIT Press, A. B. Watson, Ed., 179--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Daly, S. J. 1998. Engineering observations from spatiovelocity and spatiotemporal visual models. SPIE, B. E. Rogowitz and T. N. Pappas, Eds., vol. 3299, 180--191.Google ScholarGoogle Scholar
  8. Drago, F., Myszkowski, K., Annen, T., and N. Chiba. 2003. Adaptive logarithmic mapping for displaying high contrast scenes. Computer Graphics Forum 22, 3.Google ScholarGoogle ScholarCross RefCross Ref
  9. Fattal, R., Lischinski, D., and Werman, M. 2002. Gradient domain high dynamic range compression. In SIGGRAPH '02: Proceedings of the 29th annual conference on Computer graphics and interactive techniques, ACM Press, 249--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ferwerda, J., and Pellacini, F. 2003. Functional difference predictors (fdps): measuring meaningful image differences. In Signals, Systems and Computers, 2003. Conference Record of the Thirty-Seventh Asilomar Conference on, vol. 2, 1388--1392 Vol.2.Google ScholarGoogle Scholar
  11. Fredericksen, R. E., H. R. F. 1998. Estimating multiple temporal mechanisms in human vision. In Vision Research, vol. 38, 1023--1040.Google ScholarGoogle ScholarCross RefCross Ref
  12. Freeman, W. T., and Adelson, E. H. 1991. The design and use of steerable filters. Pattern Analysis and Machine Intelligence, IEEE Transactions on 13, 9, 891--906. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Herzog, R., Eisemann, E., Myszkowski, K., and Seidel, H.-P. 2010. Spatio-temporal upsampling on the GPU. In I3D '10: Proceedings of the 2010 symposium on Interactive 3D graphics and games, ACM, New York, NY, USA, 91--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. ITU-T. 1999. Subjective video quality assessment methods for multimedia applications.Google ScholarGoogle Scholar
  15. Lindh, P., and van den Branden Lambrecht, C. 1996. Efficient spatio-temporal decomposition for perceptual processing of video sequences. In Proceedings of International Conference on Image Processing ICIP'96, IEEE, vol. 3 of Proc. of IEEE, 331--334.Google ScholarGoogle Scholar
  16. Lubin, J. 1995. Vision Models for Target Detection and Recognition. World Scientific, ch. A Visual Discrimination Model for Imaging System Design and Evaluation, 245--283.Google ScholarGoogle Scholar
  17. Lukin, A. 2009. Improved visible differences predictor using a complex cortex transform. GraphiCon, 145--150.Google ScholarGoogle Scholar
  18. Mantiuk, R., Krawczyk, G., Myszkowski, K., and Seidel, H.-P. 2004. Perception-motivated high dynamic range video encoding. ACM Trans. Graph. 23, 3, 733--741. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Mantiuk, R., Daly, S., Myszkowski, K., and Seidel, H.-P. 2005. Predicting visible differences in high dynamic range images - model and its calibration. In Human Vision and Electronic Imaging X, vol. 5666 of SPIE Proceedings Series, 204--214.Google ScholarGoogle Scholar
  20. Masry, M. A., and Hemami, S. S. 2004. A metric for continuous quality evaluation of compressed video with severe distortions. Signal Processing: Image Communication 19, 2, 133--146.Google ScholarGoogle ScholarCross RefCross Ref
  21. Myszkowski, K., Rokita, P., and Tawara, T. 2000. Perception-based fast rendering and antialiasing of walkthrough sequences. IEEE Transactions on Visualization and Computer Graphics 6, 4, 360--379. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Myszkowski, K., Tawara, T., Akamine, H., and Seidel, H.-P. 2001. Perception-guided global illumination solution for animation rendering. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, 221--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Pattanaik, S. N., Tumblin, J. E., Yee, H., and Greenberg, D. P. 2000. Time-dependent visual adaptation for fast realistic image display. In Proc. of ACM SIGGRAPH 2000, 47--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Reeves, W. T., Salesin, D. H., and Cook, R. L. 1987. Rendering antialiased shadows with depth maps. In SIGGRAPH '87: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, 283--291. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ritschel, T., Grosch, T., and Seidel, H.-P. 2009. Approximating dynamic global illumination in image space. In I3D '09: Proceedings of the 2009 symposium on Interactive 3D graphics and games, ACM, New York, NY, USA, 75--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Rushmeier, H., Ward, G., Piatko, C., Sanders, P., and Rust, B. 1995. Comparing real and synthetic images: some ideas about metrics. In Rendering Techniques '95, Springer, P. Hanrahan and W. Purgathofer, Eds., 82--91.Google ScholarGoogle Scholar
  27. Sampat, M. P., Wang, Z., Gupta, S., Bovik, A. C., and Markey, M. K. 2009. Complex wavelet structural similarity: A new image similarity index. Image Processing, IEEE Transactions on 18, 11 (Nov.), 2385--2401. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Schwarz, M., and Stamminger, M. 2009. On predicting visual popping in dynamic scenes. In APGV '09: Proceedings of the 6th Symposium on Applied Perception in Graphics and Visualization, ACM, New York, NY, USA, 93--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Seshadrinathan, K., and Bovik, A. 2007. A structural similarity metric for video based on motion models. In Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on, vol. 1, I-869--I-872.Google ScholarGoogle Scholar
  30. Seshadrinathan, K., and Bovik, A. C. 2010. Motion tuned spatio-temporal quality assessment of natural videos. Image Processing, IEEE Transactions on 19, 2 (Feb.), 335--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. van den Branden Lambrecht, C., and Verscheure, O. 1996. Perceptual Quality Measure using a Spatio-Temporal Model of the Human Visual System. In IS&T/SPIE.Google ScholarGoogle Scholar
  32. van den Branden Lambrecht, C., Costantini, D., Sicuranza, G., and Kunt, M. 1999. Quality assessment of motion rendition in video coding. Circuits and Systems for Video Technology, IEEE Transactions on 9, 5 (Aug), 766--782. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Wandell, B. A. 1995. Foundations of Vision. Sinauer Associates, Inc.Google ScholarGoogle Scholar
  34. Wang, Z., and Simoncelli, E. 2005. Translation insensitive image similarity in complex wavelet domain. In Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP '05). IEEE International Conference on, vol. 2, 573--576.Google ScholarGoogle Scholar
  35. Watson, A. B., and Malo, J. 2002. Video quality measures based on the standard spatial observer. In ICIP (3), 41--44.Google ScholarGoogle Scholar
  36. Watson, A. B., Hu, J., and Iii, J. F. M. 2001. DVQ: A digital video quality metric based on human vision. Journal of Electronic Imaging 10, 20--29.Google ScholarGoogle ScholarCross RefCross Ref
  37. Watson, A. B. 1986. Temporal sensitivity. In Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, and J. P. Thomas, Eds. John Wiley and Sons, New York, 6-1-6-43.Google ScholarGoogle Scholar
  38. Watson, A. 1987. The Cortex transform: rapid computation of simulated neural images. Comp. Vision Graphics and Image Processing 39, 311--327. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Winkler, S. 1999. A perceptual distortion metric for digital color video. In Proceedings of the SPIE Conference on Human Vision and Electronic Imaging, IEEE, vol. 3644 of Controlling Chaos and Bifurcations in Engineering Systems, 175--184.Google ScholarGoogle Scholar
  40. Winkler, S. 2005. Digital Video Quality: Vision Models and Metrics. Wiley.Google ScholarGoogle Scholar
  41. Yee, H., Pattanaik, S., and Greenberg, D. P. 2001. Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments. ACM Trans. Graph. 20, 1, 39--65. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Video quality assessment for computer graphics applications

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGGRAPH ASIA '10: ACM SIGGRAPH Asia 2010 papers
        December 2010
        510 pages
        ISBN:9781450304399
        DOI:10.1145/1882262

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 15 December 2010

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        SIGGRAPH ASIA '10 Paper Acceptance Rate49of274submissions,18%Overall Acceptance Rate178of869submissions,20%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader