skip to main content
research-article

Discrete wavelet transform-based time series analysis and mining

Authors Info & Claims
Published:04 February 2011Publication History
Skip Abstract Section

Abstract

Time series are recorded values of an interesting phenomenon such as stock prices, household incomes, or patient heart rates over a period of time. Time series data mining focuses on discovering interesting patterns in such data. This article introduces a wavelet-based time series data analysis to interested readers. It provides a systematic survey of various analysis techniques that use discrete wavelet transformation (DWT) in time series data mining, and outlines the benefits of this approach demonstrated by previous studies performed on diverse application domains, including image classification, multimedia retrieval, and computer network anomaly detection.

References

  1. Aggarwal, C. C., Han, J., Wang, J., and Yu, P. S. 2003. A framework for clustering evolving data streams. In Proceedings of the 29th International Conference on Very Large Data Bases (VLDB). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Agrawal, R., Faloutsos, C., and Swami, A. 1993. Efficient similarity search in sequence databases. In Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms (FODO). 69--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Anderson, J. G. 1997. Clearing the way for physician's use of clinical information systems. Comm. ACM 40, 83--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Anderson, O. D. 1976. Time Series and Forecasting: The Box-Jenkins Approach. Butterworths, London, U.K.Google ScholarGoogle Scholar
  5. Ardizzoni, S., Bartolini, I., and Patella, M. 1999. Windsurf: region-based image retrieval using wavelets. In Proceedings of the 10th International Workshop on Database and Expert Systems Applications (DEXA). 167--173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Arning, A., Agrawal, R., and Raghavan, P. 1996. A linear method for deviation detection in large databases. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (SIGKDD). 164--169.Google ScholarGoogle Scholar
  7. Atallah, M., Gwadera, R., and Szpankowski, W. 2004. Detection of significant sets of episodes in event sequences. In Proceedings of the 4th IEEE International Conference on Data Mining (ICDM). 3--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bailey, T. C., Sapatinas, T., Powell, K. J., and Krzanowski, W. J. 1998. Signal detection in underwater sounds using wavelets. J Amer. Statist. Ass. 93, 441, 73--83.Google ScholarGoogle ScholarCross RefCross Ref
  9. Balasubramaniyan, R., Hüllermeier, E., Weskamp, N., and Kämper, J. 2005. Clustering of gene expression data using a local shape-based similarity measure. Bioinformatics 21, 7, 1069--1077. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Banner, A. S., Shah, R. S., and Addington, W. W. 1976. Rapid prediction of need for hospitalization in acute asthma. J. Amer. Medical Ass. 235, 13, 1337--1338.Google ScholarGoogle ScholarCross RefCross Ref
  11. Basu, S., Mukherjee, A., and Klivansky, S. 1996. Time series models for Internet traffic. In Proceedings of the 15th Annual Joint Conference of the IEEE Computer and Communications Societies, Networking the Next Generation (INFOCOM96). 611--620. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Blume, M., and Ballard, D. R. 1997a. Image annotation based on learning vector quantization and localized Haar wavelet transform features. In Proceedings of the Applications and Science of Neural Networks Conference (SPIE). 181--190.Google ScholarGoogle Scholar
  13. Blume, M. and Ballard, D. R. 1997b. Image annotation based on learning vector quantization and localized Haar wavelet transform features. In Proceedings of the Applications and Science of Artificial Neural Networks III Conference (SPIE), S. K. Rogers, Ed. 181--190.Google ScholarGoogle Scholar
  14. Brambilla, C., Ventura, A. D., Gagliardi, I., and Schettini, R. 1999. Multiresolution wavelet transform and supervised learning for content based image retrieval. In Proceedings of the IEEE International Conference on Multimedia Computing and Systems (ICMCS). 9183--9188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Brockwell, P. J. and Davis, R. A. 1991. Time Series: Theory and Methods. Springer-Verlag, Berlin, Germany. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Bunke, H. and Kraetzl, M. 2004. Classification and detection of abnormal events in time series of graphs. In Data Mining in Time Series Database. World Scientific Publishing, Singapore, 127--148.Google ScholarGoogle Scholar
  17. Castelli, V. and Kontoyiannis, I. 1996. Wavelet-based classification: Theoretical analysis. Tech. rep. RC-20475, IBM T. J. Watson Research Center, Yorktown Heights, NY, 1--25.Google ScholarGoogle Scholar
  18. Castelli, V. and Kontoyiannis, I. 1999. An efficient recursive partitioning algorithm for classification, using wavelets. Tec. rep. RC-21039, IBM T. J. Watson Research Center, Yorktown Heights, NY, 1--27.Google ScholarGoogle Scholar
  19. Castelli, V., Li, C.-S., Turek, J., and Kontoyiannis, I. 1996. Progressive classification in the compressed domain for large EOS satellite databases. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2199--2202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Chakrabarti, K., Keogh, E., Mehrotra, S., and Pazzani, M. 2002. Locally adaptive dimensionality reduction for indexing large time series databases. ACM Trans. Datab. Sys. 27, 2, 188--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Chan, K.-P. and Fu, A. W.-C. 1999. Efficient time series matching by wavelets. In Proceedings of the 15th International Conference on Data Engineering (ICDE). 126--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Chang, T. and Kuo, C.-C. J. 1993. Texture analysis and classification with tree structured wavelet transform. IEEE Trans. Image Process. 2, 4, 429--441.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Chaovalit, P. 2009. Clustering Trans. Data Streams by Example and by Variable. Information Systems, University of Maryland, Baltimore County, Baltimore, MD, 203.Google ScholarGoogle Scholar
  24. Chaovalit, P. and Gangopadhyay, A. 2007. A method for clustering time series using connected components. In Proceedings of the 17th Annual Workshop on Information Technologies and Systems (WITS).Google ScholarGoogle Scholar
  25. Chaovalit, P. and Gangopadhyay, A. 2009. A method for clustering transient data streams. In Proceedings of the 24th Annual ACM Symposium on Applied Computing. 1518--1519. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Chen, B. H., Wang, X. Z., Yang, S. H., and McGreavy, C. 1999a. Application of wavelets and neural networks to diagnostic system development, 1: Feature extraction. Comput. Chem. Eng. 23, 899--906.Google ScholarGoogle ScholarCross RefCross Ref
  27. Chen, B. H., Wang, X. Z., Yang, S. H., and McGreavy, C. 1999b. Application of wavelets and neural networks to diagnostic system development, 2: An integrated framework and its application. Comput. Chem. Eng. 23, 945--954.Google ScholarGoogle ScholarCross RefCross Ref
  28. Cheong, C. W., Lee, W. W., and Yahaya, N. A. 2005. Wavelet-based temporal cluster analysis on stock time series. In Proceedings of the International Conference on Quantitative Sciences and Its Applications (ICOQSIA).Google ScholarGoogle Scholar
  29. Chin, S. C., Ray, A., and Rajagopalan, V. 2005. Symbolic time series analysis for anomaly detection: A comparative evaluation. Signal Process. 85, 1859--1868. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Coifman, R. R. and Wickerhauser, M. V. 1992. Entropy-based algorithms for best basis selection. IEEE Trans. Inform. Theor. 38, 2, 713--718.Google ScholarGoogle ScholarCross RefCross Ref
  31. Collin, N. 2004. Time-series prediction of a waste water treatment plan. D Master's thesis. Department of Numerical Analysis and Computer Science, Royal Institute of Technology, Stockholm, Sweden.Google ScholarGoogle Scholar
  32. Dasgupta, D. and Forrest, S. 1995. Novelty detection in time series data using ideas from immunology. In Proceedings of the International Conference on Intelligent Systems, 1-6.Google ScholarGoogle Scholar
  33. Dillard, B. and Shmueli, G. 2004. Simultaneous analysis of multiple time series using two-dimensional wavelets. Department of Decision and Information Technologies, University of Maryland, College Park, MD, 1--19.Google ScholarGoogle Scholar
  34. Dinh, P. Q., Dorai, C., and Venkatesh, S. 2002. Video genre categorization using audio wavelet coefficients. In Proceedings of the 5th Asian Conference on Computer Vision (ACCV). 23--25.Google ScholarGoogle Scholar
  35. Faloutsos, C., Ranganathan, M., and Manolopoulos, Y. 1994. Fast subsequence matching in time-series databases. In Proceedings of the International Conference on Management of Data (SIGMOD). R. T. Snodgrass and M. Winslett, Eds. 419--429. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Forrest, S., Perelson, A. S., Allen, L., and Cherukuri, R. 1994. Self-nonself discrimination in a computer. In Proceedings of the IEEE Symposium on Research in Security and Privacy. 1994, 202--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Fu, A. W.-C., Leung, O. T.-W., Keogh, E., and Lin, J. 2006. Finding time series discords based on Haar transform. In Proceedings of the 2nd International Conference on Advanced Data Mining and Applications (ADMA), X. Li, O. R. Zaiane, and Z. Li, Eds. Springer Berlin/Heidelberg, Germany, 31--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Fu, T.-C., Chung, F.-L., NG, V., and Luk, R. 2001. Pattern discovery from stock time series using self-organizing maps. In Proceedings of the KDD Workshop on Temporal Data Mining. 27--37.Google ScholarGoogle Scholar
  39. Gavrilov, M., Anguelov, D., Indyk, P., and Motwani, R. 2000. Mining the stock market: Which measure is best? In Proceedings of the 6th International Conference on Knowledge Discovery and Data Mining (SIGKDD). 487--496. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Geng, L. and Hamilton, H. J. 2006. Interestingness measures for data mining: A survey. ACM Comput. Surv. 38, 3, 1-32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Geurts, P. 2001. Pattern extraction for time-series classification. In Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD). Springer-Verlag, Berlin Germany, 115--127. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Ghosh-Dastidar, S. and Adeli, H. 2003. Wavelet-clustering-neural network model for freeway incident detection. Comput. Aid. Civil Infrastruct. Eng. 18, 5, 325--338.Google ScholarGoogle ScholarCross RefCross Ref
  43. Goodwin, L. and Maher, S. 2000. Data mining for preterm birth prediction. In Proceedings of the ACM Symposium on Applied Computing (SAC'). 46--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Guha, S., Meyerson, A., Mishra, N., Motwani, R., and O'Callaghan, L. 2003. Clustering data streams: Theory and practice. IEEE Trans. Knowl. Data Eng. 15, 3, 515--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Guralnik, V. and Srivastava, J. 1999. Event detection from time series data. In Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining (SIGKDD). 33--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Han, J. and Kamber, M. 2006. Data Mining: Concepts and Techniques 2nd Ed., Morgan Kaufmann, San Francisco, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Huang, P., Feldmann, A., and Willinger, W. 2001. Timescales and stability: A non-instrusive, wavelet-based approach to detecting network performance problems. In Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement. 213--227. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Huhtala, Y., Karkkainen, J., and Toivonen, H. 1999. Mining for similarities in aligned time series using wavelets. In Proceedings of the SPIE Conference on Data Mining and Knowledge Discovery: Theory, Tools, and Technology (SPIE). B. V. Dasarathy, Ed. 150--160.Google ScholarGoogle Scholar
  49. Jacobs, C. E., Finkelstein, A., and Salesin, D. H. 1995. Fast multiresolution image querying. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH). 277--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Jensen, A. and Cour-Harbo, A. L. 2001. Ripples in Mathematics: The Discrete Wavelet Transforms. Springer.Google ScholarGoogle Scholar
  51. Kaufman, L. and Rousseeuw, P. J. 1990. Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York, NY.Google ScholarGoogle Scholar
  52. Keogh, E. J., Chakrabarti, K., Pazzani, M., and Mehrotra, S. 2001. Dimensionality reduction for fast similarity search in large time series databases. Knowl. Inform. Syst. 3, 3, 263--286.Google ScholarGoogle ScholarCross RefCross Ref
  53. Keogh, E. J., Chu, S., Hart, D., and Pazzani, M. 2004a. Segmenting time series: A survey and novel approach. In Data Mining in Time Series Database. World Scientific Publishing, Singapore, 1--21.Google ScholarGoogle Scholar
  54. Keogh, E. J. and Kasetty, S. 2002. On the need for time series data mining benchmarks: A survey and empirical demonstration. In Proceedings of the 8th International Conference on Knowledge Discovery and Data Mining (SIGKDD). 102--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Keogh, E. J., Lonardi, S., and Chiu, B. Y.-C. 2002. Finding surprising patterns in a time series database in linear time and space. In Proceedings of the 8th International Conference on Knowledge Discovery and Data Mining (SIGKDD). 550--556. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Keogh, E. J., Lonardi, S., and Ratanamahatana, C. A. 2004b. Towards parameter-free data mining. In Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining (SIGKDD). 206--215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Klimenko, S., Mitselmakher, G., and Sazonov, A. 2002. A cross-correlation technique in wavelet domain for detection of stochastic gravitational waves. Tech. rep. gr-qc/0208007. University of Florida, Gainesville, FL, 1--15.Google ScholarGoogle Scholar
  58. Kobayashi, K. and Torioka, T. 1994. A wavelet neural network for function approximation and network optimization. In Proceedings of the Conference on Artificial Neural Networks in Engineering (ANNIE). AMSE Press, New York, NY, 505--510.Google ScholarGoogle Scholar
  59. Korn, F., Jagadish, H. V., and Faloutsos, C. 1997. Efficiently supporting ad hoc queries in large datasets of time sequences. In Proceedings of the International Conference on Management of Data (SIGMOD). J. Peckham, Ed. 289--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Laine, A. and Fan, J. 1993. Texture classification by wavelet packet signatures. IEEE Trans. Patt. Anal. Mach. Intell. 15, 11, 1186--1191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Lalitha, E. M. 2004. Real-time multi-resolution decomposition of degrading fault signals using entropy measure. In Proceedings of World Academy of Science, Engineering, and Technology Conference (PWASET). 52--55.Google ScholarGoogle Scholar
  62. Lambrou, T., Kudumakis, P., Speller, R., Sandler, M., and Linney, A. 1998. Classification of audio signals using statistical features on time and wavelet tranform domains. In Proceedings of the IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP).Google ScholarGoogle Scholar
  63. Lane, T. and Brodley, C. E. 1999. Temporal sequence learning and data reduction for anomaly detection. ACM Trans. Inform. Syst. Secu. 2, 3, 295--331. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Lee, S.-L., Chun, S.-J., Kim, D.-H., Lee, J.-H., and Chung, C.-W. 2000. Similarity search for multidimensional data sequences. In Proceedings of the IEEE 16th International Conference on Data Engineering (ICDE). 599--608. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Lee, W. and Stolfo, S. J. 1998. Data mining approaches for intrusion detection. In Proceedings of the 7th USENIX Security Symposium (Security). 79--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Li, C.-S., Yu, P. S., and Castelli, V. 1998. MALM: A framework for mining sequence database at multiple abstraction levels. In Proceedings of the 7th International Conference on Information and Knowledge Management (CIKM). 267--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Li, G. and Khokhar, A. A. 2000. Content-based indexing and retrieval of audio data using wavelets. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME). 885--888.Google ScholarGoogle Scholar
  68. Li, S.-T., Chou, S.-W., and Pan, J.-J. 2000a. Multi-resolution spatio-temporal data mining for the study of air pollutant regionalization. In Proceedings of the 33rd Hawaii International Conference on System Sciences.Google ScholarGoogle Scholar
  69. Li, T., Li, Q., Zhu, S., and Ogihara, M. 2003. A survey on wavelet applications in data mining. ACM SIGKDD Explor. Newsl. 4, 2, 49--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Li, X., Dong, S., and Yuan, Z. 1999. Discrete wavelet transform for tool breakage monitoring. Int. J. Mach. Tools Manufact. 39, 1935--1944.Google ScholarGoogle ScholarCross RefCross Ref
  71. Li, X., Tso, S. K., and Wang, J. 2000b. Real-time tool condition monitoring using wavelet transforms and fuzzy techniques. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 30, 3, 352--357. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Liabotis, I., Theodoulidis, B., and Saraee, M. 2006. Improving similarity search in time series using wavelets. Int. J. Data Warehou. Min. 2, 2, 55--81.Google ScholarGoogle ScholarCross RefCross Ref
  73. Lin, J., Vlachos, M., Keogh, E., and Gunopulos, D. 2004. Iterative incremental clustering of time series. In Proceedings of the 9th International Conference on Extending Database Technology (EDBT). 106--122.Google ScholarGoogle Scholar
  74. Lotric, U. 2004. Wavelet based denoising integrated into multilayered perceptron. Neurocomput. 62, 179--196.Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Luo, J., Bridges, S. M., and Vaughn, R. B. 2001. Fuzzy frequent episodes for real-time intrusion detection. In Proceedings of the 10th IEEE International Conference on Fuzzy Systems. 368--371.Google ScholarGoogle Scholar
  76. Ma, J. and Perkins, S. 2003. Online novelty detection on temporal sequences. In Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining (SIGKDD). 613--618. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Ma, S. and Ji, C. 1999a. Modeling heterogeneous network traffic in wavelet domain: Part I—temporal correlation. Tech. rep. 99-03. CNAS Lab, Beijing, China, 1--32.Google ScholarGoogle Scholar
  78. Ma, S. and Ji, C. 1999b. Modeling Heterogeneous Network Traffic in Wavelet Domain: Part II—non-Gaussian Traffic. Tech. rep. 99-04. CNAS Lab, Beijing, China, 1--30.Google ScholarGoogle Scholar
  79. Ma, S. and Ji, C. 2001. Modeling heterogeneous network traffic in wavelet domain. IEEE Trans. Netw. 9, 5, 634--649. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Magnaghi, A., Hamada, T., and Katsuyama, T. 2004. A wavelet-based framework for proactive detection of network misconfigurations. In Proceedings of the ACM SIGCOMM Workshop on Network Troubleshooting. 253--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Mallat, S. G. 1989. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Patt. Analy. Mach. Intell. 11, 7, 674--693. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Mallat, S. G. and Hwang, W. L. 1992. Singularity detection and processing with wavelets. IEEE Trans. Inform. Theor. 38, 2, 617--643.Google ScholarGoogle ScholarCross RefCross Ref
  83. Man, P. W. P. and Wong, M. H. 2001. Efficient and robust feature extraction and pattern matching of time series by a lattice structure. In Proceedings of the 10th Conference on Information and Knowledge Management (CIKM). 271--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Mandal, M. K., Aboulnasr, T., and Panchanathan, S. 1999. Fast wavelet histogram techniques for image indexing. Comput. Vis. Image Understand. 75, 1-2, 99--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Marsland, S. 2001. On-line novelty detection through self-organisation with application to inspection robotics. Department of Computer Science, University of Manchester, Manchester, U.K.Google ScholarGoogle Scholar
  86. Misiti, M., Misiti, Y., Oppenheim, G., and Poggi, J.-M. 2005. Wavelet Toolbox User's Guide. The MathWorks, Inc., Natick, MA, 29--59.Google ScholarGoogle Scholar
  87. Mojsilovic, A., Popovic, M., Neskovic, A. N., and Popovic, A. D. 1997. Wavelet image extension for analysis and classification of infarcted myocardial tissue. IEEE Trans. Biomed. Eng. 44, 9, 856--866.Google ScholarGoogle ScholarCross RefCross Ref
  88. Murtagh, F., Starck, J.-L., and Renaud, O. 2004. On neuro-wavelet modeling. Decis. Supp. Syst. J. 37, 475--484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Natsev, A., Rastogi, R., and Shim, K. 1999. WALRUS: A similarity retrieval algorithm for image databases. In Proceedings of the International Conference on Management of Data (SIGMOD). 395--406. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Nilsson, M., Funk, P., and Xiong, N. 2005. Clinical decision support by time series classification using wavelets. In Proceedings of the International Conference on Enterprise Information Systems (ICEIS). 24--28, 2005, 169--175.Google ScholarGoogle Scholar
  91. Ogden, T. 1997. On preconditioning the data for the wavelet transform when the sample size is not a power of two. Commun. Statis. Part B—Sim. Comp. 26, 467--486.Google ScholarGoogle Scholar
  92. Orfanidis, S. J. 1996. Introduction to Signal Processing. Prentice Hall, Englewood Cliffs, N.J. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Percival, D. B. and Walden, A. T. 2000. Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge, U.K.Google ScholarGoogle Scholar
  94. Petridis, V., Kehagias, A., Petroth, L., Bakirtzis, A., Maslaris, N., Kiartzis, S., and Panagiotou, H. 2001. A Bayesian multiple models combination method for time series prediction. J. Intell. Robot. Syst. 31. 69--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Popivanov, I. and Miller, R. J. 2002. Similarity search over time-series data using wavelets. In Proceedings of the 18th International Conference on Data Engineering (ICDE). Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Renaud, O., Starck, J.-L., and Murtagh, F. 2003. Prediction based on a multiscale decomposition. Int. J. Wavelets, Multiresolution Inform. Process. 1, 2, 217--232.Google ScholarGoogle ScholarCross RefCross Ref
  97. Renaud, O., Starck, J.-L., and Murtagh, F. 2005. Wavelet-based combined signal filtering and prediction. IEEE Trans. Syst. Man, Cybern. Part B, Cybern. 35, 6, 1241--1251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Riedi, R. H., Crouse, M. S., Ribeiro, V. J., and Baraniuk, R. G. 1999. A multifractal wavelet model with application to network traffic. IEEE Trans. Informa. Theor. 45, 4, 992--1018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. Rizzi, S. and Sartoni, F. 1994. Medical decision support in clinical record management systems. In Proceedings of the International Conference on Expert Systems for Development. 267--272.Google ScholarGoogle Scholar
  100. Roddick, J. F. and Spiliopoulou, M. 1999. A bibliography of temporal, spatial and spatio-temporal data mining research. SIGKDD Explor. 1, 1, 34--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. Saeed, M. and Mark, R. G. 2001. Efficient hemodynamic event detection utilizing relational databases and wavelet analysis. In Proceedings of the Conference on Computers in Cardiology. 153--156.Google ScholarGoogle Scholar
  102. Sarma, J. 2006. Clustercubes: Time Series Weather Prediction Using Geographic EM Clustering. Computer Science Department, Columbia University, New York, NY, 1--5.Google ScholarGoogle Scholar
  103. Scheunders, P., Livens, S., Wouwer, G. V. D., Vautrot, P., and Dyck, D. V. 1998. Wavelet-based texture analysis. Int. J. Comput. Sci. Inform. Manage. 1, 2, 22--34.Google ScholarGoogle Scholar
  104. Shahabi, C., Chung, S., and Safar, M. 2001. A wavelet-based approach to improve the efficiency of multi-level surprise mining. In Proceedings of the PAKDD International Workshop on Mining Spatial and Temporal Data.Google ScholarGoogle Scholar
  105. Shahabi, C., Tian, X., and Zhao, W. 2000. TSA-tree: A wavelet-based approach to improve the efficiency of multi-level surprise and trend queries on time-series data. In Proceedings of the 12th International Conference on Scientific and Statistical Database Management (SSDBM). 55--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. Shasha, D. and Zhu, Y. 2004. High Performance Discovery In Time Series. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. Sheikholeslami, G., Chatterjee, S., and Zhang, A. 1998. WaveCluster: A multi-resolution clustering approach for very large spatial databases. In Proceedings of the 24th International Conference Very Large Data Bases (VLDB). 428--439. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. Sheikholeslami, G., Chatterjee, S., and Zhang, A. 2000. WaveCluster: a wavelet-based clustering approach for spatial data in very large databases. VLDB J. 8, 3-4, 289--304. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. Sheikholeslami, G., Zhang, A., and Bian, L. 1999. A multi-resolution content-based retrieval approach for geographic images. GeoInformatica Int. J. Advanc. Comput. Sci. Geograph. Inform. Syst. 3, 2, 109--139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Shmueli, G. 2004. Detecting bio-terrorist attacks by monitoring multiple streams of data. In Proceedings of the Symposium on Machine Learning for Anomaly Detection.Google ScholarGoogle Scholar
  111. Silver, R. B. and Ginsburg, C. M. 1984. Early prediction of the need for hospitalization in children with acute asthma. Clin. Ped. 23, 2, 81--84.Google ScholarGoogle ScholarCross RefCross Ref
  112. Soltani, S., Boichu, D., Simard, P., and Canu, S. 2000. The long-term memory prediction by multiscale decomposition. Signal Process. 80, 10, 2195--2205. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. Struzik, Z. R. and Siebes, A. 1999a. The haar wavelet transform in the time series similarity paradigm. In Proceedings of the 3rd European Conference in Principles of Data Mining and Knowledge Discovery. 12--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. Struzik, Z. R. and Siebes, A. 1999b. Measuring time series' similarity through large singular features revealed with wavelet transformation. In Proceedings of the 10th International Workshop on Database and Expert Systems Applications. 162--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. Struzik, Z. R. and Siebes, A. P. J. M. 2000. Outlier detection and localisation with wavelet based multifractal formalism. INS-R0008. Centrum voor Wiskunde en Informatica, Amsterdarm, The Netherlands, 1--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. Subasi, A. 2005. Epileptic seizure detection using dynamic wavelet network. Exp. Syst. Appl. 29, 343--355. Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. Subramanya, S. R. and Youssef, A. 1998. Wavelet-based indexing of audio data in audio/multimedia databases. In Proceedings of the International Workshop on Multi-Media Database Management Systems (MMDBMS). 46--53.Google ScholarGoogle Scholar
  118. Tzanetakis, G. and Cook, P. 2002. Musical genre classification of audio signals. IEEE Trans. Speech Audio Process. 10, 5, 293--302.Google ScholarGoogle ScholarCross RefCross Ref
  119. Tzanetakis, G., Essl, G., and Cook, P. 2001. Automatic musical genre classification of audio signals. In Proceedings of the International Symposium on Music Information Retrieval (ISMIR). 205--210.Google ScholarGoogle Scholar
  120. Wang, J. Z., Wiederhold, G., and Firschein, O. 1997a. System for screening objectionable images using Daubechies' wavelets and color histograms. In Proceedings of the 6th International Workshop on Interactive Distributed Multimedia Systems and Telecommunication Services (IDMS). M. Diaz, P. Owezarski and P. Sénac, Eds. 20--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. Wang, J. Z., Wiederhold, G., Firschein, O., and Wei, S. X. 1997b. Content-based image indexing and searching using Daubechies' wavelets. Int. J. Dig. Lib. 1, 4, 311--328.Google ScholarGoogle ScholarCross RefCross Ref
  122. Wang, J. Z., Wiederhold, G., Firschein, O., and Wei, S. X. 1997c. Wavelet-based image indexing techniques with partial sketch retrieval capability. In Proceedings of the 4th Forum on Research and Technology Advances in Digital Libraries (ADL). 13--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. Wang, Y. 1995. Jump and sharp cusp detection by wavelets. Biometrika 82, 2, 385--397.Google ScholarGoogle ScholarCross RefCross Ref
  124. Wang, Y.-P., Wang, Y., and Spencer, P. 2006. A differential wavelet-based noise reduction approach to improve clustering of hyperspectral Raman imaging data. In Proceedings of the 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro. 988--991.Google ScholarGoogle Scholar
  125. Wei, L., Kumar, N., Lolla, V., Keogh, E., Lonardi, S., Ratanamahatana, C. A., and Herle, H. V. 2005a. A practical tool for visualizing and data mining medical time series. In Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems (CBMS). 341--346. Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. Wei, L., Kumar, N., Lolla, V. N., Keogh, E., Lonardi, S., and Ratanamahatana, C. A. 2005b. Assumption-free anomaly detection in time series. In Proceedings of the 17th International Scientific and Statistical Database Management Conference (SSDBM). Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. Weigend, A. S. and Gershenfeld, N. A. 1994. Time Series Prediction: Forecasting the Future and Understanding the Past. Addison-Wesley Publishing Company, Reading, MA.Google ScholarGoogle Scholar
  128. Wong, W.-K. 2004. Data Mining for Early Disease Outbreak Detection. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.Google ScholarGoogle Scholar
  129. Wu, Y.-L., Agrawal, D., and Abbadi, A. E. 2000. A comparison of DFT and DWT based similarity search in time-series databases. In Proceedings of the 9th International Conference on Information and Knowledge Management (CIKM). 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. Yao, Y., Li, X., and Yuan, Z. 1999. Tool wear detection with fuzzy classification and wavelet fuzzy neural network. Int. J. Mach. Tools Manufact. 39, 1525--1538.Google ScholarGoogle ScholarCross RefCross Ref
  131. Yoon, H., Yang, K., and Shahabi, C. 2005. Feature subset selection and feature ranking for multivariate time series. IEEE Trans. Know. Data Eng. 17, 9, 1186--1198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  132. Zeira, G., Maimon, O., Last, M., and Rokach, L. 2004. Change detection in classification models induced from time series data. In Data Mining in Time Series Databases. World Scientific Publishing, Singapore, 101--125.Google ScholarGoogle Scholar

Index Terms

  1. Discrete wavelet transform-based time series analysis and mining

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Computing Surveys
              ACM Computing Surveys  Volume 43, Issue 2
              January 2011
              276 pages
              ISSN:0360-0300
              EISSN:1557-7341
              DOI:10.1145/1883612
              Issue’s Table of Contents

              Copyright © 2011 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 4 February 2011
              • Accepted: 1 April 2009
              • Revised: 1 January 2009
              • Received: 1 September 2008
              Published in csur Volume 43, Issue 2

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article
              • Research
              • Refereed

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader