skip to main content
research-article

Tree exploration with logarithmic memory

Published:31 March 2011Publication History
Skip Abstract Section

Abstract

We consider the task of network exploration by a mobile agent (robot) with small memory. The agent has to traverse all nodes and edges of a network (represented as an undirected connected graph), and return to the starting node. Nodes of the network are unlabeled and edge ports are locally labeled at each node. The agent has no a priori knowledge of the topology of the network or of its size, and cannot mark nodes in any way. Under such weak assumptions, cycles in the network may prevent feasibility of exploration, hence we restrict attention to trees. We present an algorithm to accomplish tree exploration (with return) using O(log n)-bit memory for all n-node trees. This strengthens the result from Diks et al. [2004], where O(log 2 n)-bit memory was used for tree exploration, and matches the lower bound on memory size proved there. We also extend our O(log n)-bit memory traversal mechanism to a weaker model in which ports at each node are ordered in circular manner, however, the explicit values of port numbers are not available.

References

  1. Albers, S. 1999. Better bounds for online scheduling. SIAM J. Comput. 29, 2, 459--473. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Aleliunas, R., Karp, R. M., Lipton, R. J., Lovász, L., and Rackoff, C. 1979. Random walks, universal traversal sequences, and the complexity of maze problems. In Proceedings of the 20th Annual Symposium on Foundations of Computer Science (FOCS'79). IEEE Computer Society, Los Alamitos, CA, 218--223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Alon, N., Azar, Y., and Ravid, Y. 1990. Universal sequences for complete graphs. Discr. Appl. Math. 27, 1-2, 25--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Awerbuch, B., Betke, M., Rivest, R. L., and Singh, M. 1995. Piecemeal graph exploration by a mobile robot (extended abstract). In Proceedings of the 8th Annual Conference on Computational Learning Theory (COLT'95). ACM, New York, 321--328. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Babai, L., Nisan, N., and Szegedy, M. 1989. Multiparty protocols and logspace-hard pseudorandom sequences (extended abstract). In Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC'89). ACM, New York, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bar-Noy, A., Borodin, A., Karchmer, M., Linial, N., and Werman, M. 1989. Bounds on universal sequences. SIAM J. Comput. 18, 2, 268--277. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bender, M. A., Fernández, A., Ron, D., Sahai, A., and Vadhan, S. P. 1998. The power of a pebble: Exploring and mapping directed graphs. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC'98). ACM, New York, 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bender, M. A. and Slonim, D. K. 1994. The power of team exploration: Two robots can learn unlabeled directed graphs. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS'94). IEEE Computer Society, Los Alamitos, CA, 75--85. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Betke, M., Rivest, R. L., and Singh, M. 1995. Piecemeal learning of an unknown environment. Mach. Learn. 18, 2-3, 231--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Bridgland, M. F. 1987. Universal traversal sequences for paths and cycles. J. Algor. 8, 3, 395--404. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Buss, J. F. and Tompa, M. 1995. Lower bounds on universal traversal sequences based on chains of length five. Inf. Comput. 120, 2, 326--329. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., and Peleg, D. 2008. Label-Guided graph exploration by a finite automaton. ACM Trans. Algor. 4, 4, 1--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Deng, X. and Papadimitriou, C. H. 1999. Exploring an unknown graph. J. Graph Theory 32, 265--297. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Diks, K., Fraigniaud, P., Kranakis, E., and Pelc, A. 2004. Tree exploration with little memory. J. Algor. 51, 1, 38--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Duncan, C. A., Kobourov, S. G., and Kumar, V. S. A. 2006. Optimal constrained graph exploration. ACM Trans. Algor. 2, 3, 380--402. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Fraigniaud, P. and Ilcinkas, D. 2004. Digraphs exploration with little memory. In Proceedings of the 21st Annual Symposium on Theoretical Aspects of Computer Science (STACS'04). Lecture Notes in Computer Science, vol. 2996. Springer, 246--257.Google ScholarGoogle Scholar
  17. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., and Peleg, D. 2005a. Graph exploration by a finite automaton. Theor. Comput. Sci. 345, 2-3, 331--344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Fraigniaud, P., Ilcinkas, D., Rajsbaum, S., and Tixeuil, S. 2005b. Space lower bounds for graph exploration via reduced automata. In Proceedings of the 12th International Colloquium on Structural Information and Communication Complexity (SIROCCO'05). Lecture Notes in Computer Science, vol. 3499. Springer, 140--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hoory, S. and Wigderson, A. 1993. Universal traversal sequences for expander graphs. Inf. Process. Lett. 46, 2, 67--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Impagliazzo, R., Nisan, N., and Wigderson, A. 1994. Pseudorandomness for network algorithms. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing (STOC'94). ACM, New York, 356--364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Istrail, S. 1988. Polynomial universal traversing sequences for cycles are constructible (extended abstract). In Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC'88). ACM, New York, 491--503. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Karloff, H. J., Paturi, R., and Simon, J. 1988. Universal traversal sequences of length no(log n) for cliques. Inf. Process. Lett. 28, 5, 241--243. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Koucký, M. 2002. Universal traversal sequences with backtracking. J. Comput. Syst. Sci. 65, 4, 717--726. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Koucký, M. 2003. Log-Space constructible universal traversal sequences for cycles of length o(n4.03). Theor. Comput. Sci. 296, 1, 117--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Nisan, N. 1992. Pseudorandom generators for space-bounded computation. Combinatorica 12, 4, 449--461.Google ScholarGoogle ScholarCross RefCross Ref
  26. Panaite, P. and Pelc, A. 1999. Exploring unknown undirected graphs. J. Algor. 33, 2, 281--295. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Reingold, O. 2008. Undirected connectivity in log-space. J. ACM 55, 4, 1--24. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Tree exploration with logarithmic memory

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Transactions on Algorithms
                ACM Transactions on Algorithms  Volume 7, Issue 2
                March 2011
                284 pages
                ISSN:1549-6325
                EISSN:1549-6333
                DOI:10.1145/1921659
                Issue’s Table of Contents

                Copyright © 2011 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 31 March 2011
                • Accepted: 1 April 2009
                • Revised: 1 December 2008
                • Received: 1 February 2008
                Published in talg Volume 7, Issue 2

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article
                • Research
                • Refereed

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader