skip to main content
10.1145/1925059.1925068acmotherconferencesArticle/Chapter ViewAbstractPublication PagessccgConference Proceedingsconference-collections
research-article

Quantitative data visualization with interactive KDE surfaces

Published:13 May 2010Publication History

ABSTRACT

Kernel density estimation (KDE) is an established statistical concept for assessing the distributional characteristics of data that also has proven its usefulness for data visualization. In this work, we present several enhancements to such a KDE-based visualization that aim (a) at an improved specificity of the visualization with respect to the communication of quantitative information about the data and its distribution and (b) at an improved integration of such a KDE-based visualization in an interactive visualization setting, where, for example, linking and brushing is easily possible both from and to such a visualization. With our enhancements to KDE-based visualization, we can extend the utilization of this great statistical concept in the context of interactive visualization.

References

  1. Artero, A. O., de Oliveira, M. C. F., and Levkowitz, H. 2004. Uncovering clusters in crowded parallel coordinates visualizations. In INFOVIS '04: Proceedings of the IEEE Symposium on Information Visualization, IEEE Computer Society, Washington, DC, USA, 81--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bachthaler, S., and Weiskopf, D. 2008. Continuous scatterplots. IEEE Transactions on Visualization and Computer Graphics 14, 6, 1428--1435. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bissantz, N., and Holzmann, H. 2007. Estimation of a quadratic regression functional using the sinc kernel. Journal of Statistical Planning and Inference 137, 3, 712--719. Special Issue on Nonparametric Statistics and Related Topics: In honor of M. L. Puri, Special Issue on Nonparametric Statistics and Related Topics: In honor of M. L. Puri.Google ScholarGoogle ScholarCross RefCross Ref
  4. Borland, D., and Taylor II, R. M. 2007. Rainbow color map (still) considered harmful. IEEE Computer Graphics and Applications 27, 2, 14--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Brandes, U., and Willhalm, T. 2002. Visualization of bibliographic networks with a reshaped landscape metaphor. In VISSYM '02: Proceedings of the symposium on Data Visualisation 2002, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 159--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cockburn, A., and McKenzie, B. 2002. Evaluating the effectiveness of spatial memory in 2d and 3d physical and virtual environments. In CHI '02: Proceedings of the SIGCHI conference on Human factors in computing systems, ACM, New York, NY, USA, 203--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Comaniciu, D., and Meer, P. 2002. Mean shift: a robust approach toward feature space analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions on 24, 5 (August), 603--619. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Comaniciu, D., Ramesh, V., and Bue, A. D. 2002. Multivariate saddle point detection for statistical clustering. In ECCV '02: Proceedings of the 7th European Conference on Computer Vision-Part III, Springer-Verlag, London, UK, 561--576. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. Numerische Mathematik 1, 269--271.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Eilers, P. H. C., and Goeman, J. J. 2004. Enhancing scatterplots with smoothed densities. Bioinformatics 20, 5, 623--628. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ertl, T. 2009. The future of scientific visualization. In VRVis-Symposium -- Visual Computing Trends 2009, vol. http://www.vrvis.at/presse/pressemitteilungen-pdf/vct-2009-talk-ertl.Google ScholarGoogle Scholar
  12. Göddeke, D. 2006. http://www.mathematik.unidortmund.de/goeddeke/gpgpu/tutorial2.html.Google ScholarGoogle Scholar
  13. Godtliebsen, F., Marron, J. S., and Chaudhuri, P. 2002. Significance in scale space for bivariate density estimation. Journal of Computational and Graphical Statistics 11, 1, 1--21.Google ScholarGoogle ScholarCross RefCross Ref
  14. Hahne, F., Arlt, D., Sauermann, M., Majety, M., Poustka, A., Wiemann, S., and Huber, W. 2006. Statistical methods and software for the analysis of high throughput reverse genetic assays using flow cytometry readouts. Genome Biology 7 (August), R77+.Google ScholarGoogle Scholar
  15. Inselberg, A. 1985. The plane with parallel coordinates. The Visual Computer 1, 4 (Dec), 69--91.Google ScholarGoogle ScholarCross RefCross Ref
  16. Johansson, J., Ljung, P., Jern, M., and Cooper, M. 2005. Revealing structure within clustered parallel coordinates displays. In INFOVIS '05: Proceedings of the Proceedings of the 2005 IEEE Symposium on Information Visualization, IEEE Computer Society, Washington, DC, USA, 125--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Keim, D. A. 2002. Information visualization and visual data mining. IEEE Transactions on Visualization and Computer Graphics 8, 1, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kidwell, P., Lebanon, G., and Cleveland, W. S. 2008. Visualizing incomplete and partially ranked data. IEEE Trans. Vis. Comput. Graph. 14, 6, 1356--1363. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Macaulay, F. R. 1931. The Whittaker-Henderson method of graduation. In The Smoothing of Time Series, NBER Chapters. National Bureau of Economic Research, Inc, December, 89--99.Google ScholarGoogle Scholar
  20. Maciejewski, R., Rudolph, S., Hafen, R., Abusalah, A. M., Yakout, M., Ouzzani, M., Cleveland, W. S., Grannis, S. J., and Ebert, D. S. 2009. A visual analytics approach to understanding spatiotemporal hotspots. IEEE Transactions on Visualization and Computer Graphics 99, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Maciejewski, R., Woo, I., Chen, W., and Ebert, D. 2009. Structuring feature space: A non-parametric method for volumetric transfer function generation. IEEE Transactions on Visualization and Computer Graphics 15, 6, 1473--1480. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Minnotte, M. C., and Scott, D. W. 1993. The mode tree: A tool for visualization of nonparametric density features. Journal of Computational and Graphical Statistics 2, 51--68.Google ScholarGoogle Scholar
  23. Novotny, M., and Hauser, H. 2006. Outlier-preserving focus+context visualization in parallel coordinates. IEEE Transactions on Visualization and Computer Graphics 12, 5, 893--900. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Parzen, E. 1962. On estimation of a probability density function and mode. The Annals of Mathematical Statistics 33, 3, 1065--1076.Google ScholarGoogle ScholarCross RefCross Ref
  25. Phong, B. T. 1975. Illumination for computer generated pictures. Commun. ACM 18, 6 (June), 311--317. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Rosenblatt, M. 1956. Remarks on some non-parametric estimates of a density function. The Annals of Mathematical Statistics 27, 832--837.Google ScholarGoogle ScholarCross RefCross Ref
  27. Scott, D. W., and Sain, S. R. 2004. "Multi-Dimensional Density Estimation". Elsevier, 229--263.Google ScholarGoogle Scholar
  28. Scott, D. W. 1985. Average shifted histograms: effective non-parametric estimators in several dimensions. Ann. Statist, 13, 1024--1040.Google ScholarGoogle ScholarCross RefCross Ref
  29. Silverman, B. W. 1986. Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC, April.Google ScholarGoogle Scholar
  30. Spence, R. 2001. Information visualization. ACM Press books. Addison-Wesley, Harlow, England. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Statlib. Statlib. http://lib.stat.cmu.edu/.Google ScholarGoogle Scholar
  32. Tory, M., Sprague, D., Wu, F., So, W. Y., and Munzner, T. 2007. Spatialization design: Comparing points and landscapes. IEEE Transactions on Visualization and Computer Graphics 13, 6, 1262--1269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Tory, M., Swindells, C., and Dreezer, R. 2009. Comparing dot and landscape spatializations for visual memory differences. IEEE Transactions on Visualization and Computer Graphics 15, 1033--1040. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Turlach, B. A. 1993. Bandwidth selection in kernel density estimation: A review. In CORE and Institut de Statistique, 23--493.Google ScholarGoogle Scholar
  35. Ward, M. O., Rundensteiner, E. A., Cui, Q., Xie, Z., Yang, D., Wad, C., and Nguyen, D. Q., 2009. XmdvTool.Google ScholarGoogle Scholar
  36. Ware, C. 2004. Information Visualization: Perception for Design. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wegman, E. J. 1990. Hyperdimensional data analysis using parallel coordinates. Journal of the American Statistical Association 85, 411, 664--675.Google ScholarGoogle ScholarCross RefCross Ref
  38. Whittaker, E. T. 1923. On a new method of graduation. Proc. Edinburgh Math. Soc, 41, 63--75.Google ScholarGoogle ScholarCross RefCross Ref
  39. Wyszecki, G., and Stiles, W. S. 1982. Color Science: Concepts and Methods, Quantitative Data and Formulae, 2 ed. Wiley-Interscience, September.Google ScholarGoogle Scholar

Index Terms

  1. Quantitative data visualization with interactive KDE surfaces

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        SCCG '10: Proceedings of the 26th Spring Conference on Computer Graphics
        May 2010
        180 pages
        ISBN:9781450305587
        DOI:10.1145/1925059

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 13 May 2010

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate42of81submissions,52%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader