skip to main content
research-article

A quantized-diffusion model for rendering translucent materials

Published:25 July 2011Publication History
Skip Abstract Section

Abstract

We present a new BSSRDF for rendering images of translucent materials. Previous diffusion BSSRDFs are limited by the accuracy of classical diffusion theory. We introduce a modified diffusion theory that is more accurate for highly absorbing materials and near the point of illumination. The new diffusion solution accurately decouples single and multiple scattering. We then derive a novel, analytic, extended-source solution to the multilayer search-light problem by quantizing the diffusion Green's function. This allows the application of the diffusion multipole model to material layers several orders of magnitude thinner than previously possible and creates accurate results under high-frequency illumination. Quantized diffusion provides both a new physical foundation and a variable-accuracy construction method for sum-of-Gaussians BSSRDFs, which have many useful properties for efficient rendering and appearance capture. Our BSSRDF maps directly to previous real-time rendering algorithms. For film production rendering, we propose several improvements to previous hierarchical point cloud algorithms by introducing a new radial-binning data structure and a doubly-adaptive traversal strategy.

Skip Supplemental Material Section

Supplemental Material

tp041_11.mp4

mp4

17.4 MB

References

  1. Aronson, R. 1995. Boundary conditions for diffusion of light. J. Opt. Soc. Am. A 12, 11 (Nov), 2532--2539.Google ScholarGoogle ScholarCross RefCross Ref
  2. Aronson, R. 1997. Radiative transfer implies a modified reciprocity relation. J. Opt. Soc. Am. A 14, 2 (Feb), 486--490.Google ScholarGoogle ScholarCross RefCross Ref
  3. Blinn, J. F. 1982. Light reflection functions for simulation of clouds and dusty surfaces. In Computer Graphics (Proceedings of SIGGRAPH 82), ACM, vol. 16, 21--29. Google ScholarGoogle Scholar
  4. Bouthors, A., Neyret, F., Max, N., Bruneton, E., and Crassin, C. 2008. Interactive multiple anisotropic scattering in clouds. In Proceedings of the 2008 symposium on Interactive 3D graphics and games, ACM, 173--182. Google ScholarGoogle Scholar
  5. Brinkworth, B. J. 1964. A diffusion model of the transport of radiation from a point source in the lower atmosphere. British Journal of Applied Physics 15, 6, 733.Google ScholarGoogle ScholarCross RefCross Ref
  6. Bryan, G. H. 1890. An application of the method of images to the conduction of heat. Proceedings of the London Mathematical Society s1-22, 1, 424--430.Google ScholarGoogle Scholar
  7. Carp, S. A., Prahl, S. A., and Venugopalan, V. 2004. Radiative transport in the delta-P 1 approximation: accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media. Journal of Biomedical Optics 9, 3, 632--647.Google ScholarGoogle ScholarCross RefCross Ref
  8. Case, K. M., and Zweifel, P. F. 1967. Linear Transport Theory. Addison-Wesley.Google ScholarGoogle Scholar
  9. Case, K. M., de Hoffman, F., and Placzek, G. 1953. Introduction to the Theory of Neutron Diffusion, vol. 1. US Government Printing Office.Google ScholarGoogle Scholar
  10. Cerezo, E., Perez, F., Pueyo, X., Seron, F., and Sillion, F. 2005. A survey on participating media rendering techniques. The Visual Computer 21, 5, 303--328.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Chandrasekhar, S. 1958. On the diffuse reflection of a pencil of radiation by a plane-parallel atmosphere. Proceedings of the National Academy of Sciences of the United States of America 44, 9, 933--940.Google ScholarGoogle ScholarCross RefCross Ref
  12. Davison, B. 1957. Neutron Transport Theory. Oxford University Press.Google ScholarGoogle Scholar
  13. d'Eon, E., Luebke, D., and Enderton, E. 2007. Efficient rendering of human skin. In Rendering Techniques, 147--157. Google ScholarGoogle Scholar
  14. Donner, C., and Jensen, H. W. 2005. Light diffusion in multi-layered translucent materials. ACM Trans. Graph. 24 (July), 1032--1039. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Donner, C., and Jensen, H. W. 2006. Rapid simulation of steady-state spatially resolved reflectance and transmittance profiles of multilayered turbid materials. J. Opt. Soc. Am. A 23, 6 (Jun), 1382--1390.Google ScholarGoogle ScholarCross RefCross Ref
  16. Donner, C., and Jensen, H. W. 2007. Rendering translucent materials using photon diffusion. In Rendering Techniques, 243--251. Google ScholarGoogle Scholar
  17. Donner, C., Weyrich, T., d'Eon, E., Ramamoorthi, R., and Rusinkiewicz, S. 2008. A layered, heterogeneous reflectance model for acquiring and rendering human skin. ACM Trans. Graph. 27, 5 (Dec), 140:1--140:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Donner, C., Lawrence, J., Ramamoorthi, R., Hachisuka, T., Jensen, H. W., and Nayar, S. 2009. An empirical BSSRDF model. ACM Trans. Graph. 28 (July), 30:1--30:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Dudko, O., and Weiss, G. 2005. Estimation of anisotropic optical parameters of tissue in a slab geometry. Biophysical journal 88, 5, 3205--3211.Google ScholarGoogle ScholarCross RefCross Ref
  20. Durian, D. J., and Rudnick, J. 1999. Spatially resolved backscattering: implementation of extrapolation boundary condition and exponential source. J. Opt. Soc. Am. A 16, 4 (Apr), 837--844.Google ScholarGoogle ScholarCross RefCross Ref
  21. Einstein, A. 1905. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 17, 549--560.Google ScholarGoogle ScholarCross RefCross Ref
  22. Elliott, J. P. 1955. Milne's problem with a point-source. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 228, 1174, 424--433.Google ScholarGoogle Scholar
  23. Farrell, T. J., Patterson, M. S., and Wilson, B. 1992. A diffusion theory model of spatially resolved, steady-state diffuse reflections for the noninvasive determination of tissue optical properties in vivo. Med. Phys. 19, 4, 879--888.Google ScholarGoogle ScholarCross RefCross Ref
  24. Graaff, R., and Rinzema, K. 2001. Practical improvements on photon diffusion theory: application to isotropic scattering. Physics in Medicine and Biology 46, 11, 3043.Google ScholarGoogle ScholarCross RefCross Ref
  25. Greengard, L., and Rokhlin, V. 1997. A fast algorithm for particle simulations. Journal of Computational Physics 135, 2, 280--292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Grosjean, C. C., and Goovaerts, M. J. 1985. On the series expansion of certain types of integral transforms--Part I. Journal of Computational and Applied Mathematics 12, 277--298.Google ScholarGoogle ScholarCross RefCross Ref
  27. Grosjean, C. C. 1951. The Exact Mathematical Theory of Multiple Scattering of Particles in an Infinite Medium. Memoirs Kon. Vl. Ac. Wetensch. 13, 36.Google ScholarGoogle Scholar
  28. Grosjean, C. C. 1956. A high accuracy approximation for solving multiple scattering problems in infinite homogeneous media. Nuovo Cimento 3, 6 (Jun), 1262--1275.Google ScholarGoogle ScholarCross RefCross Ref
  29. Grosjean, C. C. 1957. Further development of a new approximate one-velocity theory of multiple scattering. Il Nuovo Cimento 5, 1, 83--101.Google ScholarGoogle ScholarCross RefCross Ref
  30. Grosjean, C. C. 1958. Multiple Isotropic Scattering in Convex Homogeneous Media Bounded by Vacuum. Proceedings of the Second International Conference on the Peaceful Uses of Atomic Energy 16, 413.Google ScholarGoogle Scholar
  31. Grosjean, C. C. 1963. A new approximate one-velocity theory for treating both isotropic and anisotropic multiple scattering problems. Part I. Infinite homogeneous scattering media. Tech. rep., Universiteit, Ghent.Google ScholarGoogle Scholar
  32. Hanrahan, P., and Krueger, W. 1993. Reflection from layered surfaces due to subsurface scattering. In Proceedings of ACM SIGGRAPH 1993, 165--174. Google ScholarGoogle Scholar
  33. Haskell, R. C., Svaasand, L. O., Tsay, T.-T., Feng, T.-C., McAdams, M. S., and Tromberg, B. J. 1994. Boundary conditions for the diffusion equation in radiative transfer. J. Opt. Soc. Am. A 11, 10, 2727--2741.Google ScholarGoogle ScholarCross RefCross Ref
  34. Hauck, C., and McClarren, R. 2010. Positive P N closures. SIAM Journal on Scientific Computing 32, 5, 2603--2626. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Jakob, W., Arbree, A., Moon, J. T., Bala, K., and Marschner, S. 2010. A radiative transfer framework for rendering materials with anisotropic structure. ACM Trans. Graph. 29 (July), 53:1--53:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Jensen, H. W., and Buhler, J. 2002. A rapid hierarchical rendering technique for translucent materials. ACM Trans. Graphic. 21, 576--581. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Jensen, H. W., Legakis, J., and Dorsey, J. 1999. Rendering of wet materials. In Rendering Techniques, 273--282. Google ScholarGoogle Scholar
  38. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proceedings of ACM SIGGRAPH 2001, 511--518. Google ScholarGoogle Scholar
  39. Kajiya, J., and von Herzen, B. 1984. Ray tracing volume densities. In Computer Graphics (Proceedings of SIGGRAPH 84), ACM, 174. Google ScholarGoogle Scholar
  40. Kajiya, J. T. 1986. The rendering equation. In Computer Graphics (Proceedings of SIGGRAPH 86), 143--150. Google ScholarGoogle Scholar
  41. Kienle, A., and Patterson, M. S. 1997. Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium. J. Opt. Soc. Am. A 14, 1, 246--254.Google ScholarGoogle ScholarCross RefCross Ref
  42. Kienle, A. 2007. Anisotropic light diffusion: An oxymoron? Phys. Rev. Lett. 98, 21 (May), 218104.Google ScholarGoogle ScholarCross RefCross Ref
  43. Kim, A. D., and Ishimaru, A. 1998. Optical diffusion of continuous-wave, pulsed, and density waves in scattering media and comparisons with radiative transfer. Appl. Opt. 37, 22 (Aug), 5313--5319.Google ScholarGoogle ScholarCross RefCross Ref
  44. Langlands, A., and Mertens, T. 2007. Noise-free bssrdf rendering on the cheap. In ACM SIGGRAPH 2007 posters, ACM, 182. Google ScholarGoogle Scholar
  45. Larsen, E. 2010. Asymptotic diffusion and simplified P N approximations for diffusive and deep penetration problems. part 1: Theory. Transport Theory and Statistical Physics 39, 2, 110--163.Google ScholarGoogle ScholarCross RefCross Ref
  46. Levermore, C., and Pomraning, G. 1981. A flux-limited diffusion theory. The Astrophysical Journal 248, 321--334.Google ScholarGoogle ScholarCross RefCross Ref
  47. Li, H., Pellacini, F., and Torrance, K. 2005. A hybrid monte carlo method for accurate and efficient subsurface scattering. In Rendering Techniques, 283--290. Google ScholarGoogle Scholar
  48. Liemert, A., and Kienle, A. 2010. Light diffusion in N-layered turbid media: steady-state domain. Journal of Biomedical Optics 15, 2, 025003.Google ScholarGoogle Scholar
  49. Liemert, A., and Kienle, A. 2011. Analytical solution of the radiative transfer equation for infinite-space fluence. Physical Review A 83, 1, 015804.Google ScholarGoogle Scholar
  50. Malvagi, F., and Pomraning, G. C. 1991. Initial and boundary conditions for diffusive linear transport problems. Journal of Mathematical Physics 32, 3, 805.Google ScholarGoogle ScholarCross RefCross Ref
  51. Minerbo, G. 1978. Maximum entropy Eddington factors. J. Quant. Spectrosc. Radiat. Transfer 20, 6, 541--545.Google ScholarGoogle ScholarCross RefCross Ref
  52. Mishchenko, M. I. 2007. Radiative transfer: a new look of the old theory. In Radiative Transfer--V, Begell House, 1--30.Google ScholarGoogle Scholar
  53. Neulander, I. 2009. Smoother subsurface scattering. In SIGGRAPH 2009: Talks, ACM, 1. Google ScholarGoogle Scholar
  54. Patterson, M. S., Chance, B., and Wilson, B. C. 1989. Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. Appl. Opt. 28, 12, 2331--2336.Google ScholarGoogle ScholarCross RefCross Ref
  55. Peraiah, A. 2002. An introduction to Radiative Transfer: Methods and applications in astrophysics. Cambridge Univ. Press.Google ScholarGoogle Scholar
  56. Pharr, M., and Hanrahan, P. 2000. Monte carlo evaluation of non-linear scattering equations for subsurface reflection. In Proceedings of ACM SIGGRAPH 2000, 75--84. Google ScholarGoogle Scholar
  57. Pierrat, R., Greffet, J.-J., and Carminati, R. 2006. Photon diffusion coefficient in scattering and absorbing media. J. Opt. Soc. Am. A 23, 5 (May), 1106--1110.Google ScholarGoogle ScholarCross RefCross Ref
  58. Pomraning, G. C., and Ganapol, B. D. 1995. Asymptotically consistent reflection boundary conditions for diffusion theory. Annals of Nuclear Energy 22, 12, 787--817.Google ScholarGoogle ScholarCross RefCross Ref
  59. Pomraning, G. C. 2000. The transport theory of beams. Transport Theory and Statistical Physics 29, 1, 1--41.Google ScholarGoogle ScholarCross RefCross Ref
  60. Prahl, S. 1988. Light Transport in Tissue. PhD thesis, University of Texas at Austin.Google ScholarGoogle Scholar
  61. Premože, S., Ashikhmin, M., Ramamoorthi, R., and Nayar, S. 2004. Practical rendering of multiple scattering effects in participating media. In Rendering Techniques, 363--374. Google ScholarGoogle Scholar
  62. Spott, T., and Svaasand, L. O. 2000. Collimated light sources in the diffusion approximation. Appl. Opt. 39, 34, 6453--6465.Google ScholarGoogle ScholarCross RefCross Ref
  63. Stam, J. 1995. Multiple scattering as a diffusion process. In Rendering Techniques, 41--50.Google ScholarGoogle Scholar
  64. Stam, J. 2001. An illumination model for a skin layer bounded by rough surfaces. In Rendering Techniques, 39--52. Google ScholarGoogle Scholar
  65. Tariq, S., Gardner, A., Llamas, I., Jones, A., Debevec, P., and Turk, G. 2006. Efficient estimation of spatially varying subsurface scattering parameters. In Vision, Modeling, and Visualization.Google ScholarGoogle Scholar
  66. van Rossum, M., and Nieuwenhuizen, T. 1999. Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion. Reviews of Modern Physics 71, 1, 313--371.Google ScholarGoogle ScholarCross RefCross Ref
  67. Wang, L. V., Jacques, S. L., and Zheng, L. 1995. MCML -- monte carlo modeling of light transport in multi-layered tissues. Computer Methods in Programs and Biomedicine 47, 8, 131--146.Google ScholarGoogle ScholarCross RefCross Ref
  68. Weinberg, A. M., and Wigner, E. P. 1958. The Physical Theory of Neutron Chain Reactors. University of Chicago Press.Google ScholarGoogle Scholar
  69. Williams, M. M. R. 1971. Mathematical methods in particle transport theory. Butterworth.Google ScholarGoogle Scholar
  70. Williams, M. M. R. 1978. A synthetic scattering kernel for particle transport in absorbing media with anisotropic scattering. Journal of Physics D: Applied Physics 11, 2455.Google ScholarGoogle ScholarCross RefCross Ref
  71. Williams, M. M. R. 2005. The Milne problem with Fresnel reflection. Journal of Physics A: Mathematical and General 38, 17, 3841.Google ScholarGoogle ScholarCross RefCross Ref
  72. Williams, M. M. R. 2007. The searchlight problem in radiative transfer with internal reflection. Journal of Physics A: Mathematical and Theoretical 40, 24, 6407.Google ScholarGoogle ScholarCross RefCross Ref
  73. Williams, M. M. R. 2009. Three-dimensional transport theory: An analytical solution of an internal beam searchlight problem, III. Annals of Nuclear Energy 36, 8, 1256--1261.Google ScholarGoogle ScholarCross RefCross Ref
  74. Zhu, J., Pine, D., and Weitz, D. 1991. Internal reflection of diffusive light in random media. Physical Review A 44, 6, 3948--3959.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A quantized-diffusion model for rendering translucent materials

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 30, Issue 4
      July 2011
      829 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2010324
      Issue’s Table of Contents

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 25 July 2011
      Published in tog Volume 30, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader