skip to main content
research-article

Exploring photobios

Published:25 July 2011Publication History
Skip Abstract Section

Abstract

We present an approach for generating face animations from large image collections of the same person. Such collections, which we call photobios, sample the appearance of a person over changes in pose, facial expression, hairstyle, age, and other variations. By optimizing the order in which images are displayed and cross-dissolving between them, we control the motion through face space and create compelling animations (e.g., render a smooth transition from frowning to smiling). Used in this context, the cross dissolve produces a very strong motion effect; a key contribution of the paper is to explain this effect and analyze its operating range. The approach operates by creating a graph with faces as nodes, and similarities as edges, and solving for walks and shortest paths on this graph. The processing pipeline involves face detection, locating fiducials (eyes/nose/mouth), solving for pose, warping to frontal views, and image comparison based on Local Binary Patterns. We demonstrate results on a variety of datasets including time-lapse photography, personal photo collections, and images of celebrities downloaded from the Internet. Our approach is the basis for the Face Movies feature in Google's Picasa.

Skip Supplemental Material Section

Supplemental Material

tp047_11.mp4

mp4

32.2 MB

References

  1. Adelson, E. H., and Movshon, J. A. 1982. Phenomenal coherence of moving visual patterns. Nature 300, 5892, 523--525.Google ScholarGoogle Scholar
  2. Ahonen, T., Hadid, A., and Pietikinen, M. 2006. Face description with local binary pat- terns: Application to face recognition. In IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 28, 2037--2041. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Arikan, O., and Forsyth, D. A. 2002. Interactive motion generation from examples. ACM Trans. Graph. 21, 3, 483--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bederson, B. B. 2001. Photomesa: a zoomable image browser using quantum treemaps and bubblemaps. In UIST, 71--80. Google ScholarGoogle Scholar
  5. Beier, T., and Neely, S. 1992. Feature-based image metamorphosis. 35--42.Google ScholarGoogle Scholar
  6. Berg, T. L., Berg, A. C., Edwards, J., Maire, M., White, R., Teh, Y.-W., Learned-Miller, E., and Forsyth, D. A. 2004. Names and faces in the news. In CVPR, 848--854. Google ScholarGoogle Scholar
  7. Bitouk, D., Kumar, N., Dhillon, S., Belhumeur, P., and Nayar, S. K. 2008. Face swapping: automatically replacing faces in photographs. In SIGGRAPH, 1--8. Google ScholarGoogle Scholar
  8. Blanz, V., and Vetter, T. 1999. A morphable model for the synthesis of 3d faces. In SIGGRAPH, 187--194. Google ScholarGoogle Scholar
  9. Bourdev, L., and Brandt, J. 2005. Robust object detection via soft cascade. CVPR. Google ScholarGoogle Scholar
  10. Bregler, C., Covell, M., and Slaney, M. 1997. Video rewrite: Driving visual speech with audio. In SIGGRAPH, 75--84. Google ScholarGoogle Scholar
  11. Chen, S. E., and Williams, L. 1993. View interpolation for image synthesis. In SIGGRAPH, 279--288. Google ScholarGoogle Scholar
  12. Dalal, N., and Triggs, B. 2005. Histograms of oriented gradients for human detection. In CVPR, 886--893. Google ScholarGoogle Scholar
  13. Everingham, M., Sivic, J., and Zisserman, A. 2006. "Hello! My name is... Buffy" -- automatic naming of characters in TV video. In Proceedings of the British Machine Vision Conference.Google ScholarGoogle Scholar
  14. Freeman, W. T., Adelson, E. H., and Heeger, D. J. 1991. Motion without movement. Computer Graphics 25, 27--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Goldman, D. B., Gonterman, C., Curless, B., Salesin, D., and Seitz, S. M. 2008. Video object annotation, navigation, and composition. In UIST, 3--12. Google ScholarGoogle Scholar
  16. Graham, A., Garcia-Molina, H., Paepcke, A., and Winograd, T. 2002. Time as essence for photo browsing through personal digital libraries. In JCDL, 326--335. Google ScholarGoogle Scholar
  17. Huang, G. B., Ramesh, M., Berg, T., and Learned-Miller, E. 2007. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Tech. Rep. 07-49, University of Massachusetts, Amherst.Google ScholarGoogle Scholar
  18. Huynh, D. F., Drucker, S. M., Baudisch, P., and Wong, C. 2005. Time quilt: scaling up zoomable photo browsers for large, unstructured photo collections. In CHI, 1937--1940. Google ScholarGoogle Scholar
  19. Joshi, N., Szeliski, R., and Kriegman, D. J. 2008. Psf estimation using sharp edge prediction. In CVPR.Google ScholarGoogle Scholar
  20. Katz, S., Tal, A., and Basri, R. 2007. Direct visibility of point sets. SIGGRAPH 26, 3. Google ScholarGoogle Scholar
  21. Kemelmacher-Shlizerman, I., Sankar, A., Shechtman, E., and Seitz, S. M. 2010. Being John Malkovich. ECCV. Google ScholarGoogle Scholar
  22. Kenkel, F. 1913. Untersuchungenber den zusammenhang zwischen erscheinungsgrsse und ersehrinungsbewegung bei einigen sogenannten optischen tuschungen. Z. Psychol. 67, 358--449.Google ScholarGoogle Scholar
  23. Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. In SIGGRAPH, 473--482. Google ScholarGoogle Scholar
  24. Kumar, N., Belhumeur, P., and Nayar, S. 2008. Facetracer: A search engine for large collections of images with faces. In ECCV, 340--353. Google ScholarGoogle Scholar
  25. Lasseter, J. 1987. Principles of traditional animation applied to 3D computer animation. In Proc. SIGGRAPH 87, 35--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Levoy, M., and Hanrahan, P. 1996. Light field rendering. In SIGGRAPH, 31--42. Google ScholarGoogle Scholar
  27. Lu, Z.-L., and Sperling, G. 2002. Three systems theory of human visual motion perception. JOSA A 19, 2, 413--413.Google ScholarGoogle ScholarCross RefCross Ref
  28. Lucas, B., and Kanade, T. 1981. An iterative image registration technique with an application to stereo vision. Proceedings of Imaging Understanding Workshop, 121--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Marr, D., and Hildreth, E. 1980. Theory of edge detection. Proc. R. Soc. Lond. B 207, 187--217.Google ScholarGoogle ScholarCross RefCross Ref
  30. Nalwa, V. S., and Binford, T. O. 1986. On detecting edges. IEEE Trans. Pattern Anal. Mach. Intell. 8, 699--714. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ojala, T., Pietikinen, M., and Menp, T. 2002. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, 971--987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Pentland, A., Picard, R. W., and Sclaroff, S. 1996. Photobook: Content-based manipulation of image databases. International Journal of Computer Vision 18, 3, 233--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Picasa, 2010. http://googlephotos.blogspot.com/2010/08/picasa-38-face-movies-picnik.html.Google ScholarGoogle Scholar
  34. Pighin, F., Hecker, J., Lischinski, D., Szeliski, R., and Salesin, D. H. 1998. Synthesizing realistic facial expressions from photographs. In SIGGRAPH, 75--84. Google ScholarGoogle Scholar
  35. Rekimoto, J. 1999. Time-machine computing: a time-centric approach for the information environment. In UIST, 45--54. Google ScholarGoogle Scholar
  36. Seitz, S. M., and Dyer, C. R. 1996. View morphing. In SIGGRAPH, 21--30. Google ScholarGoogle Scholar
  37. Shashua, A. 1992. Geometry and Photometry in 3D Visual Recognition. PhD thesis, Massachusetts Institute Of Technology, Cambridge, MA. Google ScholarGoogle Scholar
  38. Snavely, N., Garg, R., Seitz, S. M., and Szeliski, R. 2008. Finding paths through the world's photos. ACM Trans. Graph. 27, 3, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Szeliski, R., and Shum, H.-Y. 1997. Creating full view panoramic image mosaics and environment maps. In Proc. SIGGRAPH 97, 251--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Wertheimer, M. 1912. Experimentelle studien uber das sehen von bewegung. Z. Psychol. 61, 161--265.Google ScholarGoogle Scholar
  41. Zhang, L., Snavely, N., Curless, B., and Seitz, S. M. 2004. Spacetime faces: high resolution capture for modeling and animation. In SIGGRAPH, 548--558. Google ScholarGoogle Scholar

Index Terms

  1. Exploring photobios

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 30, Issue 4
        July 2011
        829 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2010324
        Issue’s Table of Contents

        Copyright © 2011 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 25 July 2011
        Published in tog Volume 30, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader