skip to main content
research-article

Real-time Eulerian water simulation using a restricted tall cell grid

Published:25 July 2011Publication History
Skip Abstract Section

Abstract

We present a new Eulerian fluid simulation method, which allows real-time simulations of large scale three dimensional liquids. Such scenarios have hitherto been restricted to the domain of off-line computation. To reduce computation time we use a hybrid grid representation composed of regular cubic cells on top of a layer of tall cells. With this layout water above an arbitrary terrain can be represented without consuming an excessive amount of memory and compute power, while focusing effort on the area near the surface where it most matters. Additionally, we optimized the grid representation for a GPU implementation of the fluid solver. To further accelerate the simulation, we introduce a specialized multi-grid algorithm for solving the Poisson equation and propose solver modifications to keep the simulation stable for large time steps. We demonstrate the efficiency of our approach in several real-world scenarios, all running above 30 frames per second on a modern GPU. Some scenes include additional features such as two-way rigid body coupling as well as particle representations of sub-grid detail.

Skip Supplemental Material Section

Supplemental Material

tp084_11.mp4

mp4

23.7 MB

References

  1. Adalsteinsson, D., and Sethian, J. A. 1997. The fast construction of extension velocities in level set methods. Journal of Computational Physics 148, 2--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adaptively sampled particle fluids. In Proc. SIGGRAPH, 48. Google ScholarGoogle Scholar
  3. Bargteil, A. W., Goktekin, T. G., O'Brien, J. F., and Strain, J. A. 2005. A semi-lagrangian contouring method for fluid simulation. ACM Transactions on Graphics. Google ScholarGoogle Scholar
  4. Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling. In Proc. SIGGRAPH, 100. Google ScholarGoogle Scholar
  5. Batty, C., Xenos, S., and Houston, B. 2010. Tetrahedral embedded boundary methods for accurate and flexible adaptive fluids. In Proc. Eurographics.Google ScholarGoogle Scholar
  6. Bridson, R. 2008. Fluid Simulation for Computer Graphics. A K Peters. Google ScholarGoogle Scholar
  7. Brochu, T., and Bridson, R. 2009. Robust topological operations for dynamic explicit surfaces. SIAM Journal on Scientific Computing 31, 4, 2472--2493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid simulation elements to surface geometry and topology. In Proc. SIGGRAPH, 1--9. Google ScholarGoogle Scholar
  9. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: animating the interplay between rigid bodies and fluid. In Proc. SIGGRAPH, 377--384. Google ScholarGoogle Scholar
  10. Chentanez, N., and Müller-Fischer, M. 2010. Real-time simulation of large bodies of water with small scale details. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Chentanez, N., Goktekin, T. G., Feldman, B. E., and O'Brien, J. F. 2006. Simultaneous coupling of fluids and deformable bodies. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 83--89. Google ScholarGoogle Scholar
  12. Chentanez, N., Feldman, B. E., Labelle, F., O'Brien, J. F., and Shewchuk, J. R. 2007. Liquid simulation on lattice-based tetrahedral meshes. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 219--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Cohen, J. M., Tariq, S., and Green, S. 2010. Interactive fluid-particle simulation using translating eulerian grids. In Proc. ACM SIGGRAPH symposium on Interactive 3D Graphics and Games, 15--22. Google ScholarGoogle Scholar
  14. Crane, K., Llamas, I., and Tariq, S. 2007. Real-time simulation and rendering of 3d fluids. In GPU Gems 3, H. Nguyen, Ed. Addison Wesley Professional, August, ch. 30.Google ScholarGoogle Scholar
  15. Enright, D., and Fedkiw, R. 2002. Robust treatment of interfaces for fluid flows and computer graphics. In Computer Graphics, 9th Int. Conf. on Hyperbolic Problems Theory, Numerics, Applications.Google ScholarGoogle Scholar
  16. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. In Proc. SIGGRAPH, 736--744. Google ScholarGoogle Scholar
  17. Enright, D., Nguyen, D., Gibou, F., and Fedkiw, R. 2003. Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In In Proc. 4th ASME-JSME Joint Fluids Eng. Conf., number FEDSM200345144. ASME, 2003--45144.Google ScholarGoogle Scholar
  18. Feldman, B. E., O'Brien, J. F., and Klingner, B. M. 2005. Animating gases with hybrid meshes. In Proc. SIGGRAPH, 904--909. Google ScholarGoogle Scholar
  19. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In Proc. SIGGRAPH, 23--30. Google ScholarGoogle Scholar
  20. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models Image Process. 58, 5, 471--483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. In Proc. SIGGRAPH, 973--981. Google ScholarGoogle Scholar
  22. Holmberg, N., and Wünsche, B. C. 2004. Efficient modeling and rendering of turbulent water over natural terrain. In Proc. GRAPHITE, 15--22. Google ScholarGoogle Scholar
  23. Irving, G., Guendelman, E., Losasso, F., and Fedkiw, R. 2006. Efficient simulation of large bodies of water by coupling two- and three-dimensional techniques. In Proc. SIGGRAPH, 805--811. Google ScholarGoogle Scholar
  24. Jeong, W.-K., Ross, and Whitaker, T. 2007. A fast eikonal equation solver for parallel systems. In SIAM conference on Computational Science and Engineering.Google ScholarGoogle Scholar
  25. Kim, D., Song, O.-Y., and Ko, H.-S. 2008. A semi-lagrangian cip fluid solver without dimensional splitting. Computer Graphics Forum 27, 2 (April), 467--475.Google ScholarGoogle ScholarCross RefCross Ref
  26. Klingner, B. M., Feldman, B. E., Chentanez, N., and O'Brien, J. F. 2006. Fluid animation with dynamic meshes. In Proc. SIGGRAPH, 820--825. Google ScholarGoogle Scholar
  27. Lentine, M., Zheng, W., and Fedkiw, R. 2010. A novel algorithm for incompressible flow using only a coarse grid projection. In Proc. SIGGRAPH, 114:1--114:9. Google ScholarGoogle Scholar
  28. Long, B., and Reinhard, E. 2009. Real-time fluid simulation using discrete sine/cosine transforms. In Proc. ACM SIGGRAPH symposium on Interactive 3D Graphics and Games, 99--106. Google ScholarGoogle Scholar
  29. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. In Proc. SIGGRAPH, 457--462. Google ScholarGoogle Scholar
  30. Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R. 2008. Two-way coupled sph and particle level set fluid simulation. IEEE Transactions on Visualization and Computer Graphics 14, 4, 797--804. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. McAdams, A., Sifakis, E., and Teran, J. 2010. A parallel multigrid poisson solver for fluids simulation on large grids. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Molemaker, J., Cohen, J. M., Patel, S., and Noh, J. 2008. Low viscosity flow simulations for animation. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 9--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Müller, M. 2009. Fast and robust tracking of fluid surfaces. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarGoogle Scholar
  35. Neyret, F. 2003. Advected textures. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 147--153. Google ScholarGoogle Scholar
  36. Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A. E., and Whitaker, R. T. 2003. Particle-based simulation of fluids. Comput. Graph. Forum 22, 3, 401--410.Google ScholarGoogle ScholarCross RefCross Ref
  37. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 193--202. Google ScholarGoogle Scholar
  38. Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., and Fedkiw, R. 2008. Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph. 27 (August), 46:1--46:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Sanders, J., and Kandrot, E. 2010. CUDA by Example: An Introduction to General-Purpose GPU Programming. Addison-Wesley Professional. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. 2008. An unconditionally stable MacCormack method. J. Sci. Comput. 35, 2-3, 350--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Sin, F., Bargteil, A. W., and Hodgins, J. K. 2009. A point-based method for animating incompressible flow. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 247--255. Google ScholarGoogle Scholar
  42. Solenthaler, B., and Pajarola, R. 2009. Predictive-corrective incompressible sph. In Proc. SIGGRAPH, 1--6. Google ScholarGoogle Scholar
  43. Stam, J. 1999. Stable fluids. In Proc. SIGGRAPH, 121--128. Google ScholarGoogle Scholar
  44. Takahashi, T., Ueki, H., Kunimatsu, A., and Fujii, H. 2002. The simulation of fluid-rigid body interaction. In ACM SIGGRAPH conference abstracts and applications, 266--266. Google ScholarGoogle Scholar
  45. Thürey, N., and Rüde, U. 2004. Free Surface Lattice-Boltzmann fluid simulations with and without level sets. Proc. of Vision, Modelling, and Visualization VMV, 199--207.Google ScholarGoogle Scholar
  46. Thürey, N., and Rüde, U. 2009. Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids. Computing and Visualization in Science 12 (5). Google ScholarGoogle ScholarCross RefCross Ref
  47. Thurey, N., Muller-Fischer, M., Schirm, S., and Gross, M. 2007. Real-time breakingwaves for shallow water simulations. In Proc. Pacific Conf. on CG and App., 39--46. Google ScholarGoogle Scholar
  48. Štava, O., Beneš, B., Brisbin, M., and Křivánek, J. 2008. Interactive terrain modeling using hydraulic erosion. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 201--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2010. Physics-inspired topology changes for thin fluid features. In Proc. SIGGRAPH, no. 4, 1--8. Google ScholarGoogle Scholar
  50. Yu, J., and Turk, G. 2010. Enhancing fluid animation with adaptive, controllable and intermittent turbulence. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. In Proc. SIGGRAPH, 965--972. Google ScholarGoogle Scholar

Index Terms

  1. Real-time Eulerian water simulation using a restricted tall cell grid

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 30, Issue 4
            July 2011
            829 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2010324
            Issue’s Table of Contents

            Copyright © 2011 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 25 July 2011
            Published in tog Volume 30, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader