skip to main content
10.1145/2019406.2019431acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
research-article

Graph-based fire synthesis

Published:05 August 2011Publication History

ABSTRACT

We present a novel graph-based data-driven technique for cost-effective fire modeling. This technique allows composing long animation sequences using a small number of short simulations. While traditional techniques such as motion graphs and motion blending work well for character motion synthesis, they cannot be trivially applied to fluids to produce results with physically consistent properties which are crucial to the visual appearance of fluids. Motivated by the motion graph technique used in character animations, we introduce a new type of graph which can be applied to create various fire phenomena. Each graph node consists of a group of compact spatial-temporal flow pathlines instead of a set of volumetric state fields. Consequently, achieving smooth transitions between discontinuous graph nodes for modeling turbulent fires becomes feasible and computationally efficient. The synthesized particle flow results allow direct particle controls which is much more flexible than a full volumetric representation of the simulation output. The accompanying video shows the versatility and potential power of this new technique for synthesizing realtime complex fire at the quality comparable to production animations.

Skip Supplemental Material Section

Supplemental Material

p187-zhang.mov

mov

54.8 MB

References

  1. {AF02} Arikan O., Forsyth D. A.: Interactive motion generation from examples. ACM Trans. Graph. 21 (2002), 483--490. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. {ANSN06} Angelidis A., Neyret F., Singh K., Nowrouzezahrai D.: A controllable, fast and stable basis for vortex based smoke simulation. In Proc. of SCA '06 (2006), pp. 25--32. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. {BSHK04} Bhat K. S., Seitz S. M., Hodgins J. K., Khosla P. K.: Flow-based video synthesis and editing. ACM Trans. Graph. 23 (2004), 360--363. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. {But87} Butcher J. C.: The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods. Wiley-Interscience, New York, NY, USA, 1987. 4 Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. {CBL*09} Chang Y., Bao K., Liu Y., Zhu J., Wu E.: A particle-based method for viscoelastic fluids animation. In Proc. of VRST '09 (2009), pp. 111--117. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. {CLC*09} Cha M., Lee J., Choi B., Lee H., Han S.: A data-driven visual simulation of fire phenomena. In Proc. of SIGGRAPH '09: Posters (2009), pp. 1--1. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. {FF01} Foster N., Fedkiw R.: Practical animation of liquids. In Proc. of SIGGRAPH '01 (2001), pp. 23--30. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. {FL04} Fattal R., Lischinski D.: Target-driven smoke animation. ACM Trans. Graph. 23 (2004), 441--448. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. {FOA03} Feldman B. E., O'Brien J. F., Arikan O.: Animating suspended particle explosions. ACM Trans. Graph. 22 (2003), 708--715. 2, 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. {FSJ01} Fedkiw R., Stam J., Jensen H. W.: Visual simulation of smoke. In Proc. of SIGGRAPH '01 (2001), pp. 15--22. 2, 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. {GBO04} Goktekin T. G., Bargteil A. W., O'Brien J. F.: A method for animating viscoelastic fluids. ACM Trans. Graph. 23 (2004), 463--468. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. {Har03} Harris M. J.: Real-time cloud simulation and rendering. PhD thesis, University of North Carolina at Chapel Hill, 2003. Director-Lastra, Anselmo. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. {HG09} Horvath C., Geiger W.: Directable, high-resolution simulation of fire on the gpu. ACM Trans. Graph. 28 (2009), 41:1--41:8. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. {HSF07} Hong J.-M., Shinar T., Fedkiw R.: Wrinkled flames and cellular patterns. ACM Trans. Graph. 26 (2007). 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. {JTCW07} James D. L., Twigg C. D., Cove A., Wang R. Y.: Mesh ensemble motion graphs: Data-driven mesh animation with constraints. ACM Trans. Graph. 26 (2007). 2, 4 Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. {KGP02} Kovar L., Gleicher M., Pighin F.: Motion graphs. ACM Trans. Graph. 21 (2002), 473--482. 2, 4 Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. {KSE*03} Kwatra V., Schödl A., Essa I., Turk G., Bobick A.: Graphcut textures: image and video synthesis using graph cuts. ACM Trans. Graph. 22 (July 2003), 277--286. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. {KTJG08} Kim T., Thürey N., James D., Gross M.: Wavelet turbulence for fluid simulation. ACM Trans. Graph. 27 (2008), 50:1--50:6. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. {LCF05} Lai Y.-C., Chenney S., Fan S.: Group motion graphs. In Proc. of SCA '05 (2005), pp. 281--290. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. {LGF04} Losasso F., Gibou F., Fedkiw R.: Simulating water and smoke with an octree data structure. ACM Trans. Graph. 23 (2004), 457--462. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. {LLX*01} Liang L., Liu C., Xu Y.-Q., Guo B., Shum H.-Y.: Real-time texture synthesis by patch-based sampling. ACM Trans. Graph. 20 (2001), 127--150. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. {LR09} Long B., Reinhard E.: Real-time fluid simulation using discrete sine/cosine transforms. In Proc. of I3D '09 (2009), pp. 99--106. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. {LZF10} Lentine M., Zheng W., Fedkiw R.: A novel algorithm for incompressible flow using only a coarse grid projection. ACM Trans. Graph. 29 (July 2010), 114:1--114:9. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. {MCG03} Müller M., Charypar D., Gross M.: Particle-based fluid simulation for interactive applications. In Proc. of SCA '03 (2003), pp. 154--159. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. {McG10} McGuire M.: G3D Innovation Engine, 2010. http://g3d.sourceforge.net/. 7Google ScholarGoogle Scholar
  26. {MTPS04} McNamara A., Treuille A., Popović Z., Stam J.: Fluid control using the adjoint method. ACM Trans. Graph. 23 (2004), 449--456. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. {MWGZ09} Ma C., Wei L.-Y., Guo B., Zhou K.: Motion field texture synthesis. ACM Trans. Graph. 28 (2009), 110:1--110:8. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. {ND01} Nishita T., Dobashi Y.: Modeling and rendering of various natural phenomena consisting of particles. In Proc. of CGI '01 (2001), pp. 149--156. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. {NFJ02} Nguyen D. Q., Fedkiw R., Jensen H. W.: Physically based modeling and animation of fire. ACM Trans. Graph. 21 (2002), 721--728. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. {NSCL08} Narain R., Sewall J., Carlson M., Lin M. C.: Fast animation of turbulence using energy transport and procedural synthesis. ACM Trans. Graph. 27, 5 (2008), 1--8. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. {NVI07} Nvidia C.: Compute Unified Device Architecture Programming Guide, 2007. 3Google ScholarGoogle Scholar
  32. {PCS04} Pighin F., Cohen J. M., Shah M.: Modeling and editing flows using advected radial basis functions. In Proc. of SCA '04 (2004), pp. 223--232. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. {PTSG09} Pfaff T., Thuerey N., Selle A., Gross M.: Synthetic turbulence using artificial boundary layers. ACM Trans. Graph. 28, 5 (2009), 1--10. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. {SB08} Schechter H., Bridson R.: Evolving sub-grid turbulence for smoke animation. In Proc. of SCA '08 (2008), pp. 1--7. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. {SP09} Solenthaler B., Pajarola R.: Predictive-corrective incompressible sph. ACM Trans. Graph. 28 (2009), 1--6. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. {SSSE00} Schödl A., Szeliski R., Salesin D. H., Essa I.: Video textures. In Proc. of SIGGRAPH '00 (2000), pp. 489--498. 2, 4 Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. {Sta99} Stam J.: Stable fluids. In Proc. of SIGGRAPH '99 (1999), pp. 121--128. 2, 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. {Sta01} Stam J.: A simple fluid solver based on the fft. J. Graph. Tools 6, 2 (2001), 43--52. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. {TLP06} Treuille A., Lewis A., Popović Z.: Model reduction for real-time fluids. ACM Trans. Graph. 25 (2006), 826--834. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. {WP10} Weissmann S., Pinkall U.: Filament-based smoke with vortex shedding and variational reconnection. ACM Trans. Graph. 29 (July 2010), 115:1--115:12. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. {WST09} Wicke M., Stanton M., Treuille A.: Modular bases for fluid dynamics. ACM Trans. Graph. 28 (2009), 1--8. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. {YOH00} Yngve G. D., O'Brien J. F., Hodgins J. K.: Animating explosions. In Proc. of SIGGRAPH '00 (2000), pp. 29--36. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. {ZZJ*07} Zhang L., Zhang Y., Jiang Z., Li L., Chen W., Peng Q.: Precomputing data-driven tree animation. Comput. Animat. Virtual Worlds 18, 4--5 (2007), 371--382. 2, 4 Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Graph-based fire synthesis

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SCA '11: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
      August 2011
      297 pages
      ISBN:9781450309233
      DOI:10.1145/2019406

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 August 2011

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate183of487submissions,38%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader