skip to main content
research-article

Interference-aware geometric modeling

Published:12 December 2011Publication History
Skip Abstract Section

Abstract

While often a requirement for geometric models, there has been little research in resolving the interaction of deforming surfaces during real-time modeling sessions. To address this important topic, we introduce an interference algorithm specifically designed for the domain of geometric modeling. This algorithm is general, easily working within existing modeling paradigms to maintain their important properties. Our algorithm is fast, and is able to maintain interactive rates on complex deforming meshes of over 75K faces, while robustly removing intersections. Lastly, our method is controllable, allowing fine-tuning to meet the specific needs of the user. This includes support for minimum separation between surfaces and control over the relative rigidity of interacting objects.

Skip Supplemental Material Section

Supplemental Material

a137-harmon.mp4

mp4

56.8 MB

References

  1. Aldrich, G., Pinskiy, D., and Hamann, B. 2011. Collision-driven volumetric deformation on the GPU. Eurographics 2011.Google ScholarGoogle Scholar
  2. Allard, J., Faure, F., Courtecuisse, H., Falipou, F., Duriez, C., and Kry, P. G. 2010. Volume contact constraints at arbitrary resolution. ACM Trans. Graph. 29 (July), 82:1--82:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Angelidis, A., Cani, M., Wyvill, G., and King, S. 2006. Swirling-sweepers: Constant-volume modeling. Graphical Models 68, 4, 324--332. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Au, O. K.-C., Tai, C.-L., Chu, H.-K., Cohen-Or, D., and Lee, T.-Y. 2008. Skeleton extraction by mesh contraction. ACM Trans. Graph. 27 (August), 44:1--44:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Baraff, D. 1989. Analytical methods for dynamic simulation of non-penetrating rigid bodies. In Proc. SIGGRAPH, 223--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Baraff, D. 1994. Fast contact force computation for nonpenetrating rigid bodies. In Proc. SIGGRAPH, 23--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Barbič, J., and James, D. 2008. Six-dof haptic rendering of contact between geometrically complex reduced deformable models. IEEE Transactions on Haptics, 39--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Botsch, M., and Sorkine, O. 2007. On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics, 213--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Botsch, M., Pauly, M., Gross, M., and Kobbelt, L. 2006. Primo: coupled prisms for intuitive surface modeling. In Proceedings of the fourth Eurographics symposium on Geometry processing, Eurographics Association, 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Boyd, S., and Vandenberghe, L. 2004. Convex Optimization. Cambridge University Press, New York, NY, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3, 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Catmull, E., and Clark, J. 1978. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10, 6, 350--355.Google ScholarGoogle ScholarCross RefCross Ref
  13. Cottle, R., Pang, J., and Stone, R. 1993. The Linear Complementarity Problem. Academic Press, New York, NY.Google ScholarGoogle Scholar
  14. Ericson, C. 2004. Real-Time Collision Detection (The Morgan Kaufmann Series in Interactive 3D Technology). Morgan Kaufmann, December. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Faure, F., Barbier, S., Allard, J., and Falipou, F. 2008. Image-based collision detection and response between arbitrary volumetric objects. In ACM Siggraph/Eurographics Symposium on Computer Animation, SCA 2008, July, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Gain, J., and Dodgson, N. 2001. Preventing self-intersection under free-form deformation. IEEE Transactions on Visualization and Computer Graphics, 289--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Harmon, D., Vouga, E., Tamstorf, R., and Grinspun, E. 2008. Robust treatment of simultaneous collisions. ACM Trans. Graph. 27, 3, 23:1--23:4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Harmon, D., Vouga, E., Smith, B., Tamstorf, R., and Grinspun, E. 2009. Asynchronous contact mechanics. ACM Trans. Graph. 28, 87:1--87:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Heidelberger, B., Teschner, M., and Gross, M. 2004. Detection of collisions and self-collisions using image-space techniques. Journal of WSCG 12, 3, 145--152.Google ScholarGoogle Scholar
  20. Kaufman, D. M., Edmunds, T., and Pai, D. K. 2005. Fast frictional dynamics for rigid bodies. ACM Trans. Graph. 24, 946--956. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lötstedt, P. 1984. Numerical simulation of time-dependent contact and friction problems in rigid body mechanics. SIAM Journal on Scientific and Statistical Computing 5, 370--384.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. McNeely, W. A., Puterbaugh, K. D., and Troy, J. J. 1999. Six degree-of-freedom haptic rendering using voxel sampling. SIGGRAPH '99, 401--408. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Mirtich, B., and Canny, J. 1995. Impulse-based dynamic simulation. In WAFR: Proceedings of the workshop on Algorithmic foundations of robotics, A. K. Peters, Ltd., Natick, MA, USA, 407--418. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Moore, M., and Wilhelms, J. 1988. Collision detection and response for computer animation. ACM, New York, NY, USA, SIGGRAPH '88, 289--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Provot, X. 1997. Collision and self-collision handling in cloth model dedicated to design garments. In Proc. Computer Animation and Simulation, Springer Verlag, 177--189.Google ScholarGoogle Scholar
  26. Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. ACM, New York, NY, USA, SIGGRAPH '86, 151--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Selle, A., Lentine, M., and Fedkiw, R. 2008. Amass spring model for hair simulation. ACM Trans. Graph. 27, 3, 64--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Snyder, J. M. 1995. An interactive tool for placing curved surfaces without interpenetration. ACM, New York, NY, USA, SIGGRAPH'95, 209--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Proc. Symposium on Geometry Processing, 109--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Sorkine, O., Cohen-Or, D., Lipman, Y, Alexa, M., Rössl, C., and Seidel, H. 2004. Laplacian surface editing. In Proc. Symposium on Geometry processing, 175--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Stewart, D., and Trinkle, J. 1996. An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and coulomb friction. Intl. Journal for Numerical Methods in Engineering 39, 2673--2691.Google ScholarGoogle ScholarCross RefCross Ref
  32. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. ACM, New York, NY, USA, SIGGRAPH '87, 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Teschner, M., Heidelberger, B., Müller, M., Pomeranets, D., and Gross, M. 2003. Optimized spatial hashing for collision detection of deformable objects. In Proc. VMV, 47--54.Google ScholarGoogle Scholar
  34. Teschner, M., Kimmerle, S., Zachmann, G., Heidelberger, B., Raghupathi, L., Fuhrmann, A., Cani, M.-P., Faure, F., Magnenat-Thalmann, N., and Strasser, W. 2004. State-of-the-art report: Collision detection for deformable objects. In Proc. Eurographics, 119--139.Google ScholarGoogle Scholar
  35. UNC, 2010. Self-ccd: Continuous collision detection for deforming objects.Google ScholarGoogle Scholar
  36. Von Funck, W., Theisel, H., and Seidel, H. 2006. Vector field based shape deformations. ACM Trans. Graph. 25, 3, 1118--1125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wriggers, P., and Laursen, T. A. 2007. Computational contact mechanics, vol. 498 of CISM courses and lectures. Springer.Google ScholarGoogle Scholar

Index Terms

  1. Interference-aware geometric modeling

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 30, Issue 6
        December 2011
        678 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2070781
        Issue’s Table of Contents

        Copyright © 2011 ACM

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 12 December 2011
        Published in tog Volume 30, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader