skip to main content
research-article

Practical filtering for efficient ray-traced directional occlusion

Published:12 December 2011Publication History
Skip Abstract Section

Abstract

Ambient occlusion and directional (spherical harmonic) occlusion have become a staple of production rendering because they capture many visually important qualities of global illumination while being reusable across multiple artistic lighting iterations. However, ray-traced solutions for hemispherical occlusion require many rays per shading point (typically 256-1024) due to the full hemispherical angular domain. Moreover, each ray can be expensive in scenes with moderate to high geometric complexity. However, many nearby rays sample similar areas, and the final occlusion result is often low frequency. We give a frequency analysis of shadow light fields using distant illumination with a general BRDF and normal mapping, allowing us to share ray information even among complex receivers. We also present a new rotationally-invariant filter that easily handles samples spread over a large angular domain. Our method can deliver 4x speed up for scenes that are computationally bound by ray tracing costs.

Skip Supplemental Material Section

Supplemental Material

References

  1. AcademyAwards, 2010. Scientific and Technical Achievements to be Honored with Academy Awards. http://www.oscars.org/press/pressreleases/2010/20100107.html.Google ScholarGoogle Scholar
  2. Arikan, O., Forsyth, D. A., and O'Brien, J. F. 2005. Fast and Detailed Approximate Global Illumination by Irradiance Decomposition. ACM Trans. on Graph. (SIGGRAPH) 24, 1108--1114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bavoil, L., and Sainz, M. 2009. ShaderX7 - Advanced Rendering Techniques. ch. Image-Space Horizon-Based Ambient Occlusion.Google ScholarGoogle Scholar
  4. Chai, J., Tong, X., Chan, S., and Shum, H. 2000. Plenoptic Sampling. In Proceedings of SIGGRAPH 2000, 307--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Christensen, P. H. 2008. Point-Based Approximate Color Bleeding. Tech. Rep. 08--01, Pixar Animation Studios.Google ScholarGoogle Scholar
  6. Durand, F., Holzschuch, N., Soler, C., Chan, E., and Sillion, F. X. 2005. A Frequency Analysis of Light Transport. ACM Transactions on Graphics (SIGGRAPH 05) 24, 3, 1115--1126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Egan, K., Tseng, Y.-T., Holzschuch, N., Durand, F., and Ramamoorthi, R. 2009. Frequency Analysis and Sheared Reconstruction for Rendering Motion Blur. ACM Trans. on Grap. (SIGGRAPH) 28, 3, 93:1--93:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Egan, K., Hecht, F., Durand, F., and Ramamoorthi, R. 2011. Frequency Analysis and Sheared Filtering for Shadow Light Fields of Complex Occluders. ACM Trans. on Graph. 30, 2, 9:1--9:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Hašan, M., Pellacini, F., and Bala, K. 2007. Matrix row-column sampling for the many-light problem. ACM Trans. Graph. 26, 3, 26:1--26:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Huang, F.-C., and Ramamoorthi, R. 2010. Sparsely Precomputing the Light Transport Matrix for Real-Time Rendering. Computer Graphics Forum (EGSR 10) 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Křivánek, J., Gautron, P., Pattanaik, S., and Bouatouch, K. 2005. Radiance caching for efficient global illumination computation. IEEE Trans. on Visualization and Computer Graphics 11, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Laine, S., and Karras, T. 2010. Two methods for fast ray-cast ambient occlusion. Computer Graphics Forum (EGSR 10) 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Landis, H. 2008. Production ready global illumination. In ACM SIGGRAPH Course Notes: RenderMan in Production, 87--102.Google ScholarGoogle Scholar
  14. Lanman, D., Raskar, R., Agrawal, A., and Taubin, G. 2008. Shield Fields: Modeling and Capturing 3D Occluders. ACM Transactions on Graphics (SIGGRAPH Asia) 27, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Lehtinen, J., Aila, T., Chen, J., Laine, S., and Durand, F. 2011. Temporal Light Field Reconstruction for Rendering Distribution effects. ACM Trans. Graph. 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. McGuire, M. 2010. Ambient Occlusion Volumes. In Proceedings of High Performance Graphics 2010, 47--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Méndez-Feliu, A., and Sbert, M. 2009. From Obscurances to Ambient Occlusion: A Survey. Vis. Comput. 25, 2, 181--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Ng, R., Ramamoorthi, R., and Hanrahan, P. 2003. All-Frequency Shadows Using Non-Linear Wavelet Lighting Approximation. ACM Trans. on Graph. (SIGGRAPH 03) 22, 3, 376--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Pantaleoni, J., Fascione, L., Hill, M., and Aila, T. 2010. PantaRay: Fast Ray-Traced Occlusion Caching of Massive Scenes. ACM Trans. on Graph. (SIGGRAPH 10) 29, 4, 37:1--37:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Pixar, 2005. The RenderMan Interface, version 3.2.1. https://renderman.pixar.com/products/rispec/rispec_pdf/RISpec3_2.pdf.Google ScholarGoogle Scholar
  21. Ramamoorthi, R., Koudelka, M., and Belhumeur, P. 2005. A fourier theory for cast shadows. IEEE Trans. Pattern Anal. Mach. Intell. 27, 2, 288--295. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Shinya, M. 1993. Spatial anti-aliasing for animation sequences with spatio-temporal filtering. In SIGGRAPH '93, 289--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Sloan, P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM TOG (SIGGRAPH 02) 21, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Soler, C., and Sillion, F. 1998. Fast Calculation of Soft Shadow Textures Using Convolution. In Proceedings of SIGGRAPH 98, ACM Press/ACM SIGGRAPH, 321--332. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ward, G., Rubinstein, F., and Clear, R. 1988. A Ray Tracing Solution for Diffuse Interreflection. In SIGGRAPH 88, 85--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Zhukov, S., Iones, A., and Kronin, G. 1998. An ambient light illumination model. In Rendering Techniques (Eurographics 98), 45--56.Google ScholarGoogle Scholar

Index Terms

  1. Practical filtering for efficient ray-traced directional occlusion

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 30, Issue 6
        December 2011
        678 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2070781
        Issue’s Table of Contents

        Copyright © 2011 ACM

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 12 December 2011
        Published in tog Volume 30, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader