skip to main content
10.1145/2024156.2024215acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Progressive photon beams

Published:12 December 2011Publication History

ABSTRACT

We present progressive photon beams, a new algorithm for rendering complex lighting in participating media. Our technique is efficient, robust to complex light paths, and handles heterogeneous media and anisotropic scattering while provably converging to the correct solution using a bounded memory footprint. We achieve this by extending the recent photon beams variant of volumetric photon mapping. We show how to formulate a progressive radiance estimate using photon beams, providing the convergence guarantees and bounded memory usage of progressive photon mapping. Progressive photon beams can robustly handle situations that are difficult for most other algorithms, such as scenes containing participating media and specular interfaces, with realistic light sources completely enclosed by refractive and reflective materials. Our technique handles heterogeneous media and also trivially supports stochastic effects such as depth-of-field and glossy materials. Finally, we show how progressive photon beams can be implemented efficiently on the GPU as a splatting operation, making it applicable to interactive and real-time applications. These features make our technique scalable, providing the same physically-based algorithm for interactive feedback and reference-quality, unbiased solutions.

Skip Supplemental Material Section

Supplemental Material

a181-jarosz.mp4

mp4

62.5 MB

References

  1. Akenine-Möller, T., Haines, E., and Hoffman, N. 2008. Real-Time Rendering 3rd Edition. A. K. Peters, Ltd., Natick, MA, USA.Google ScholarGoogle Scholar
  2. Chandrasekar, S. 1960. Radiative Transfer. Dover Publications.Google ScholarGoogle Scholar
  3. Chen, J., Baran, I., Durand, F., and Jarosz, W. 2011. Realtime volumetric shadows using 1D min-max mipmaps. In Symposium on Interactive 3D Graphics and Games, 39--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Engelhardt, T., and Dachsbacher, C. 2010. Epipolar sampling for shadows and crepuscular rays in participating media with single scattering. In Symposium on Interactive 3D Graphics and Games, 119--125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Engelhardt, T., Novák, J., and Dachsbacher, C. 2010. Instant multiple scattering for interactive rendering of heterogeneous participating media. Tech. rep., Karlsruhe Institut of Technology, Dec.Google ScholarGoogle Scholar
  6. Hachisuka, T., and Jensen, H. W. 2009. Stochastic progressive photon mapping. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2009) 28, 5 (Dec.), 141:1--141:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Hachisuka, T., Ogaki, S., and Jensen, H. W. 2008. Progressive photon mapping. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2008) 27, 5 (Dec.), 130:1--130:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Hachisuka, T., Jarosz, W., and Jensen, H. W. 2010. A progressive error estimation framework for photon density estimation. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2010) 29, 6 (Dec.), 144:1--144:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Havran, V., Bittner, J., Herzog, R., and Seidel, H.-P. 2005. Ray maps for global illumination. In Rendering Techniques 2005: (Proceedings of the Eurographics Symposium on Rendering), 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Herzog, R., Havran, V., Kinuwaki, S., Myszkowski, K., and Seidel, H.-P. 2007. Global illumination using photon ray splatting. Computer Graphics Forum (Proceedings of Eurographics 2007) 26, 3 (Sept.), 503--513.Google ScholarGoogle Scholar
  11. Hu, W., Dong, Z., Ihrke, I., Grosch, T., Yuan, G., and Seidel, H.-P. 2010. Interactive volume caustics in single-scattering media. In Symposium on Interactive 3D Graphics and Games, 109--117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Jarosz, W., Zwicker, M., and Jensen, H. W. 2008. The beam radiance estimate for volumetric photon mapping. Computer Graphics Forum (Proceedings of Eurographics 2008) 27, 2 (Apr.), 557--566.Google ScholarGoogle Scholar
  13. Jarosz, W., Nowrouzezahrai, D., Sadeghi, I., and Jensen, H. W. 2011. A comprehensive theory of volumetric radiance estimation using photon points and beams. ACM Transactions on Graphics (Presented at SIGGRAPH 2011) 30, 1 (Jan.), 5:1--5:19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Jensen, H. W., and Christensen, P. H. 1998. Efficient simulation of light transport in scenes with participating media using photon maps. In SIGGRAPH '98, 311--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jensen, H. W. 2001. Realistic Image Synthesis Using Photon Mapping. A. K. Peters, Ltd., Natick, MA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kajiya, J. T. 1986. The rendering equation. In Computer Graphics (Proceedings of SIGGRAPH 86), 143--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Knaus, C., and Zwicker, M. 2011. Progressive photon mapping: A probabilistic approach. ACM Transactions on Graphics (Presented at SIGGRAPH 2011) 30, 3 (May), 25:1--25:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Krüger, J., Bürger, K., and Westermann, R. 2006. Interactive screen-space accurate photon tracing on gpus. In Rendering Techniques 2006 (Proceedings of the Eurographics Workshop on Rendering), 319--330. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lafortune, E. P., and Willems, Y. D. 1993. Bi-directional path tracing. In Compugraphics, 145--153.Google ScholarGoogle Scholar
  20. Lafortune, E. P., and Willems, Y. D. 1996. Rendering participating media with bidirectional path tracing. In Eurographics Rendering Workshop 1996, 91--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lastra, M., Ureña, C., Revelles, J., and Montes, R. 2002. A particle-path based method for monte carlo density estimation. In Rendering Techniques (Proceeeings of the Eurographics Workshop on Rendering).Google ScholarGoogle Scholar
  22. Liktor, G., and Dachsbacher, C. 2011. Real-time volume caustics with adaptive beam tracing. In Symposium on Interactive 3D Graphics and Games, 47--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lokovic, T., and Veach, E. 2000. Deep shadow maps. In SIGGRAPH, 385--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. McGuire, M., and Luebke, D. 2009. Hardware-accelerated global illumination by image space photon mapping. In Proceedings of High Performance Graphics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., and Stich, M. 2010. Optix: A general purpose ray tracing engine. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2010) 29, 4 (July), 66:1--66:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Pauly, M., Kollig, T., and Keller, A. 2000. Metropolis light transport for participating media. In Rendering Techniques 2000 (Proceedings of the Eurographics Workshop on Rendering), 11--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Perlin, K. 2001. Noise hardware. In Realtime Shading, ACM SIGGRAPH Course Notes.Google ScholarGoogle Scholar
  28. Raab, M., Seibert, D., and Keller, A. 2008. Unbiased global illumination with participating media. In Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, 591--606.Google ScholarGoogle Scholar
  29. Schjøth, L., Frisvad, J. R., Erleben, K., and Sporring, J. 2007. Photon differentials. In GRAPHITE, ACM, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Silverman, B. 1986. Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman and Hall, New York.Google ScholarGoogle Scholar
  31. Sun, X., Zhou, K., Lin, S., and Guo, B. 2010. Line space gathering for single scattering in large scenes. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2010) 29, 4 (July), 54:1--54:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Szirmay-Kalos, L., Tóth, B., and Magdics, M. 2011. Free path sampling in high resolution inhomogeneous participating media. Computer Graphics Forum 30, 1, 85--97.Google ScholarGoogle ScholarCross RefCross Ref
  33. Veach, E., and Guibas, L. 1994. Bidirectional estimators for light transport. In Photorealistic Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering), 147--162.Google ScholarGoogle Scholar
  34. Veach, E., and Guibas, L. J. 1997. Metropolis light transport. In Proceedings of SIGGRAPH 97, 65--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Walter, B., Zhao, S., Holzschuch, N., and Bala, K. 2009. Single scattering in refractive media with triangle mesh boundaries. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2009) 28, 3 (July), 92:1--92:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Williams, L. 1978. Casting curved shadows on curved surfaces. Computer Graphics (Proceedings of SIGGRAPH 78) 12 (Aug.), 270--274. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Woodcock, E., Murphy, T., Hemmings, P., and T. C., L. 1965. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. In Applications of Computing Methods to Reactor Problems, Argonne National Laboratory.Google ScholarGoogle Scholar
  38. Yue, Y., Iwasaki, K., Chen, B.-Y., Dobashi, Y., and Nishita, T. 2010. Unbiased, adaptive stochastic sampling for rendering inhomogeneous participating media. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2010) 29 (Dec.), 177:1--177:8. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Progressive photon beams

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SA '11: Proceedings of the 2011 SIGGRAPH Asia Conference
      December 2011
      730 pages
      ISBN:9781450308076
      DOI:10.1145/2024156

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 December 2011

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate178of869submissions,20%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader