skip to main content
10.1145/2047196.2047264acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

Modular and deformable touch-sensitive surfaces based on time domain reflectometry

Published:16 October 2011Publication History

ABSTRACT

Time domain reflectometry, a technique originally used in diagnosing cable faults, can also locate where a cable is being touched. In this paper, we explore how to extend time domain reflectometry in order to touch-enable thin, modular, and deformable surfaces and devices. We demonstrate how to use this approach to make smart clothing and to rapid prototype touch-sensitive objects of arbitrary shape. To accomplish this, we extend time domain reflectometry in three ways: (1) Thin: We demonstrate how to run time domain reflectometry on a single wire. This allows us to touch-enable thin metal objects, such as guitar strings. (2) Modularity: We present a two-pin connector system that allows users to daisy chain touch-sensitive segments. We illustrate these enhancements with 13 prototypes and a series of performance measurements. (3) Deformability: We create deformable touch devices by mounting stretch-able wire patterns onto elastic tape and meshes. We present selected performance measurements.

Skip Supplemental Material Section

Supplemental Material

fp178.mp4

mp4

28.8 MB

References

  1. Anderson, G., Doherty, R., and Ganapathy, S. User Perception of Touch Screen Latency. In Marcus, A. Design, User Experience, and Usability. Theory, Methods, Tools and Practice (LNCS 6769), Springer, 2011, pp. 195--202.Google ScholarGoogle Scholar
  2. Atmel, Touch Sensors Design Guide, Atmel Corporation, 10620D-AT42-04/09, 2009, p. 9.Google ScholarGoogle Scholar
  3. Barrett, G. and Omote, R. Projected-Capacitive Touch Technology, Information Display Magazine, 26(3). 2010, pp. 16--21.Google ScholarGoogle ScholarCross RefCross Ref
  4. Beck, F. and Stumpe, B. Two Devices for Operator Interaction in the Central Control of the New CERN Accelerator, CERN 73--6, 197.Google ScholarGoogle Scholar
  5. Butler, A., Izadi, S., and Hodges, S. SideSight: multi-"touch" interaction around small devices. In Proc. UIST '08, pp. 201--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Collins, Ryan V. Methods and apparatus for receiving user input via time domain reflectometry. US-Patent 2004/0239616 A1, 2004.Google ScholarGoogle Scholar
  7. Dietz, P. and Leigh, D. DiamondTouch: a multi-user touch technology, In Proc UIST '01, pp. 219--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dijkstra, J., Perez, C., and Vertegaal, R. Evaluating Effects of Structural Holds on Pointing and Dragging Performance with Flexible Displays. In Proc CHI '11, pp. 1293--1302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Doorn, E., Tolani, D. Radical Extension of Time Domain Reflectometry for Detection and Location of Flows in Air-craft Wiring Systems, 9th Joint FAA/DoD/NASA Conference on Aging Aircraft, 2006.Google ScholarGoogle Scholar
  10. Furse, C., Chung, Y.C., Lo, C., and Pendayala, P. A Critical Comparison of Reflectometry Methods for Location of Wiring Faults, Journal of Smart Structures and Systems, 2(1), 2006, pp. 25--4.Google ScholarGoogle ScholarCross RefCross Ref
  11. 1Han, D.H., Xu, B.S., Choi, M.J., He, J., Gardiner, S., and Lee, C. Realization of Ultra-Wideband, High-Resolution TDR for Chip-Carrier Packages. In Proc ASME InterPACK '05, pp. 1499--150.Google ScholarGoogle Scholar
  12. Harrison, C., Tan, D., and Morris, D. Skinput: appropriating the body as an input surface. In Proc CHI '10, pp. 453--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hilbert, D. Ueber die stetige Abbildung einer Linie auf ein Flächenstück, Mathematische Annalen, 38, 1891, pp. 459--460.Google ScholarGoogle ScholarCross RefCross Ref
  14. Holleis, P., Schmidt, A., Paasovaara, S., Puikkonen, A., and Häkkila, J. Evaluating capacitive touch input on clothes. In Proc MobileHCI '08, pp. 81--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Huang, C.F. Precise Location of Touch Panel by Employing the Time-Domain Reflectometry. SID Symposium Digest of Technical Papers, 40(1), 2009, pp. 1291--1293.Google ScholarGoogle ScholarCross RefCross Ref
  16. Hurst, S. and Parks, J. Electrical Sensor Of Plane Coordinates. US Patent 3,662,105, 1972.Google ScholarGoogle Scholar
  17. Karrer, T., Wittenhagen, M., Lichtschlag, L., Heller, F., and Borchers, J. Pinstripe: Eyes-free Continuous Input on Inter-active Clothing. In Proc CHI '11. pp. 1313--1322. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Linz, T., Vieroth, R., Dils, C., Koch, M., Braun, T., Becker, K. F., Kallmayer, C., and Hong. S. Embroidered Interconnections and Encapsulation for Electronics in Textiles for Wear-able Electronics Applications. Advances in Science and Technology, 60, 2008, pp. 85--94.Google ScholarGoogle Scholar
  19. Malicki, M. A., Plagge, R., Renger, M., and Walczak, R. T. Application of time-domain reflectometry (TDR) soil moisture miniprobe for the determination of unsaturated soil water characteristics from undisturbed soil cores, Irrigation Sci-ence, 13(2), 1992, pp. 65--72.Google ScholarGoogle ScholarCross RefCross Ref
  20. Mann, S. "Smart clothing": wearable multimedia computing and "personal imaging" to restore the balance between people and their intelligent environments. In Proc. Multimedia '96, pp. 163--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. 2Missinne, J., Van Steenberge, G. , Van Hoe, B. Van Coillie, K., Van Gijseghem, T., Dubruel, P., Vaneteren, J., and Van Daele, P. An array waveguide sensor for artificial optical skins. In Proc SPIE 7221, 722105, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  22. 2Oliver, B. M. Time Domain Reflectometry, HP Journal 15(6), 1964.Google ScholarGoogle Scholar
  23. Perner-Wilson, H., Buechley, L., and Satomi, M. Handcrafting textile interfaces from a kit-of-no-parts. In Proc TEI '11, pp. 61--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Poupyrev, I., Yeo, Z., Griffin, J., and Hudson, S. Sensing Human Activities with Resonant Tuning. In CHI'10 Ex-tended Abstracts, pp. 4135--4140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Rekimoto, J., Ishizawa, T., Schwesig, C., and Oba, H. Pre-Sense: interaction techniques for finger sensing input devices. In Proc UIST '03, pp. 203--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Roudaut, A., Pohl, H., and Baudisch, P. Touch on Curved Surfaces. In Proc CHI '11, pp. 1011--102.Google ScholarGoogle Scholar
  27. Schwarz, J., Harrison, C., Hudson, S., and Mankoff, J. Cord input: an intuitive, high-accuracy, multi-degree-of-freedom input method for mobile devices. In Proc. CHI '10, pp. 1657--1660. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Schwarz, J., Harrison, C., Mankoff, J., and Hudson, S. E. Cord Input: An Intuitive, High-Accuracy, Multi-Degree-of-Freedom Input Method for Mobile Devices. In Proc CHI'10, pp. 1657--1660. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Slyper, R., Poupyrev, I., and Hodgins, J. Sensing through structure: designing soft silicone sensors. In Proc TEI '11, pp. 213--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Smith, J., White, T., Dodge, C., Paradiso, J., Gershenfeld, N., and Allport, D. Electric field sensing for graphical interfaces. Computer Graphics and Applications, 18(3), IEEE, 1998, pp. 54--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. 3Sun, S. Pommerenke, D., Drewniak, J., Chen, G., Xue, L., Brower, M., and Koledintseva, M. A novel TDR-based coaxial cable sensor for crack/strain sensing in reinforced concrete structures. IEEE Transactions on Instrumentation and Measurement, 58(8), 2009, pp. 2714--272.Google ScholarGoogle ScholarCross RefCross Ref
  32. 3Taylor, B. T. and Bove, V. M. Graspables: grasp-recognition as a user interface. In Proc CHI '09. pp. 917--926.. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. 3Tektronix. TDR Impedance Measurements: A Foundation for Signal Integrity. Application Note, 2008.Google ScholarGoogle Scholar
  34. Villar, N., Izadi, S., Rosenfeld, D., Benko, H., Helmes, J., Westhues, J., Hodges, S., Butler, A., Ofek, E., Cao, X., and Chen, B. Mouse 2.0: Multi-touch Meets the Mouse. In Proc. UIST '09, pp. 33--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wagner, S., Lacour, S., Jonesa, J., Hsu, P., Sturm, J., Li, T., and Suo, Z. Electronic skin: architecture and components, Physica, E 25, 2004, pp. 326--334.Google ScholarGoogle ScholarCross RefCross Ref
  36. Weigelt, C., Hübler, A. Printed Near Field Communication System. Lecture Notes in Informatics, Nr. 133, 2008, pp. 301--306.Google ScholarGoogle Scholar
  37. 3Wimmer, R. FlyEye: grasp-sensitive surfaces using optical fiber. In Proc TEI '10. pp. 245--248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. 3Wimmer, R. Capacitive Sensors for Whole Body Interaction In: David England (Ed.): Whole Body Interaction. Springer, Berlin, Germany, 2011, pp. 121--133..Google ScholarGoogle Scholar

Index Terms

  1. Modular and deformable touch-sensitive surfaces based on time domain reflectometry

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UIST '11: Proceedings of the 24th annual ACM symposium on User interface software and technology
      October 2011
      654 pages
      ISBN:9781450307161
      DOI:10.1145/2047196

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 16 October 2011

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      UIST '11 Paper Acceptance Rate67of262submissions,26%Overall Acceptance Rate842of3,967submissions,21%

      Upcoming Conference

      UIST '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader