skip to main content
10.1145/2070942.2070968acmconferencesArticle/Chapter ViewAbstractPublication PagessensysConference Proceedingsconference-collections
research-article

PBN: towards practical activity recognition using smartphone-based body sensor networks

Published:01 November 2011Publication History

ABSTRACT

The vast array of small wireless sensors is a boon to body sensor network applications, especially in the context awareness and activity recognition arena. However, most activity recognition deployments and applications are challenged to provide personal control and practical functionality for everyday use. We argue that activity recognition for mobile devices must meet several goals in order to provide a practical solution: user friendly hardware and software, accurate and efficient classification, and reduced reliance on ground truth. To meet these challenges, we present PBN: Practical Body Networking. Through the unification of TinyOS motes and Android smartphones, we combine the sensing power of on-body wireless sensors with the additional sensing power, computational resources, and user-friendly interface of an Android smartphone. We provide an accurate and efficient classification approach through the use of ensemble learning. We explore the properties of different sensors and sensor data to further improve classification efficiency and reduce reliance on user annotated ground truth. We evaluate our PBN system with multiple subjects over a two week period and demonstrate that the system is easy to use, accurate, and appropriate for mobile devices.

Skip Supplemental Material Section

Supplemental Material

human_sensing_1.mp4

mp4

127 MB

References

  1. F. Albinali, S. Intille, W. Haskell, and M. Rosenberger. Using Wearable Activity Type Detection to Improve Physical Activity Energy Expenditure Estimation. In UbiComp '10, pages 311--320. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Azizyan, I. Constandache, and R. Choudhury. Surround-Sense: Mobile Phone Localization via Ambience Fingerprinting. In MobiCom '09, pages 261--272. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. O. Chipara, C. Lu, T. Bailey, and G.-C. Roman. Reliable Clinical Monitoring using Wireless Sensor Networks: Experience in a Step-down Hospital Unit. In SenSys '10, pages 155--168. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Cranshaw, E. Toch, J. Hong, A. Kittur, and N. Saleh. Bridging the Gap Between Physical Location and Online Social Networks. In UbiComp '10, pages 119--128. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. de Quincey. HTC Hero (MSM7201) USB Host Mode, 2010. http://adq.livejournal.com/95689.html.Google ScholarGoogle Scholar
  6. S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-S. Ahn, and A. T. Campbell. The BikeNet Mobile Sensing System for Cyclist Experience Mapping. In SenSys '07, pages 87--101. ACM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madded, and H. Balakrishnan. The Pothole Patrol: Using a Mobile Sensor Network for Road Surface Monitoring. In MobiSys '08, pages 29--39. ACM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Y. Freund and R. Schapire. A Decision-Theoretic Generalization of On-line Learning and an Application to Boosting. JCSS, 37(3):297--336, 1997.Google ScholarGoogle Scholar
  9. R. K. Ganti, P. Jayachandran, T. Abdelzaher, and J. Stankovic. SATIRE: A Software Architecture for Smart AtTIRE. In MobiSys '06, pages 110--123. ACM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. H. He and E. Garcia. Learning from Imbalanced Data. IEEE TKDE, 21(9):1263--1284, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Keally, G. Zhou, G. Xing, and J. Wu. Exploiting Sensing Diversity for Confident Sensing in Wireless Sensor Networks. In INFOCOM '11, pages 1719--1727. IEEE, 2011.Google ScholarGoogle Scholar
  12. D. Kim, Y. Kim, D. Estrin, and M. Srivastava. SensLoc: Sensing Everyday Places and Paths using Less Energy. In SenSys '10, pages 43--56. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Kullback and R. Leibler. On Information and Sufficiency. Annals of Mathematical Statistics, 22(1):79--86, 1951.Google ScholarGoogle ScholarCross RefCross Ref
  14. J. Lester, T. Choudhury, N. Kern, G. Borriello, and B. Hannaford. A Hybrid Discriminative/Generative Approach for Modeling Activities. In IJCAI, pages 766--772, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. K. Lorincz, B. Chen, G. Challen, A. Chowdhury, S. Patel, P. Bonato, and M. Welsh. Mercury: A Wearable Sensor Network Platform for High-Fidelity Motion Analysis. In SenSys '09, pages 183--196. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. H. Lu, W. Pan, N. Lane, T. Choudhury, and A. Campbell. SoundSense: Scalable Sound Sensing for People-Centric Sensing Applications on Mobile Phones. In MobiSys '09, pages 165--178. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. H. Lu, J. Yang, Z. Liu, N. Lane, T. Choudhury, and A. Campbell. The Jigsaw Continuous Sensing Engine for Mobile Phone Applications. In SenSys '10, pages 71--84. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. E. Miluzzo, C. Cornelius, A. Ramaswamy, T. Choudhury, Z. Liu, and A. Campbell. Darwin Phones: The Evolution of Sensing and Inference on Mobile Phones. In MobiSys '10, pages 5--20. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. E. Miluzzo, N. Lane, K. Fodor, R. Peterson, H. Lu, and M. Musolesi. Sensing Meets Mobile Social Networks: The Design, Implementation and Evaluation of the CenceMe Application. In SenSys '08, pages 337--350. ACM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. D. Peebles, T. Choudhury, H. Lu, N. Lane, and A. Campbell. Community-Guided Learning: Exploiting Mobile Sensor User to Model Human Behavior. In AAAI, 2010.Google ScholarGoogle Scholar
  21. T. Pering, P. Zhang, R. Chaudhri, Y. Anokwa, and R. Want. The PSI Board: Realizing a Phone-Centric Body Sensor Network. In BSN, pages 26--28, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  22. M. Quwaider and S. Biswas. Body Posture Identification using Hidden Markov Model with a Wearable Sensor Network. In Bodynets '08, pages 19:1--19:8. ICST, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. K. Rachuri, M. Musolesi, C. Mascolo, P. Rentfrow, C. Longworth, and A. Acuinas. EmotionSense: A Mobile Phones based Adaptive Platform for Experimental Social Psychology Research. In UbiComp '10, pages 281--290. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Z. Ren, G. Zhou, A. Pyles, M. Keally, W. Mao, and H. Wang. BodyT2: Throughput and Time Delay Performace Assurance for Heterogeneous BSNs. In INFOCOM '11, pages 2750--2758. IEEE, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  25. J. Rodgers and W. Nicewander. Thirteen Ways to Look at the Correlation Coefficient. The American Statistician, 42(1):59--66, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  26. K. Srinivasan, M. Jain, J. Choi, T. Azim, E. Kim, P. Levis, and B. Krishnamachari. The k Factor: Inferring Protocol Performance Using Inter-Link Reception Correlation. In MobiCom '10, pages 317--328. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Y. Wang, J. Lin, M. Annavaram, Q. Jacobson, J. Hong, B. Krishnamachari, and N. Sadeh. A Framework of Energy Efficient Mobile Sensing for Automatic User State Recognition. In MobiSys '09, pages 179--192. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. P. Zappi, C. Lombriser, T. Steifmeier, E. Farella, D. Roggen, L. Benini, and G. Troster. Activity Recognition from On-Body Sensors: Accuracy-Power Trade-Off by Dynamic Sensor Selection. In EWSN '08, pages 17--33, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. R. Zhou, Y. Xiong, G. Xing, L. Sun, and J. Ma. ZiFi: Wireless LAN Discovery via ZigBee Interference Signatures. In MobiCom '10, pages 49--60. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Z.-H. Zhou, J. Wu, and W. Tang. Ensembling Neural Networks: Many Could Be Better Than All. Artificial Intelligence, 137:239--263, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. T. Zhu, Z. Zhong, T. He, and Z. Zhang. Exploring Link Correlation for Efficient Flooding in Wireless Sensor Networks. In NSDI '10. USENIX, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. PBN: towards practical activity recognition using smartphone-based body sensor networks

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SenSys '11: Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems
        November 2011
        452 pages
        ISBN:9781450307185
        DOI:10.1145/2070942

        Copyright © 2011 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 November 2011

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate174of867submissions,20%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader