skip to main content
research-article

A novel framework for exploring 3-D FPGAs with heterogeneous interconnect fabric

Published:23 March 2012Publication History
Skip Abstract Section

Abstract

A heterogeneous interconnect architecture can be a useful approach for the design of 3-D FPGAs. A methodology to investigate heterogeneous interconnection schemes for 3-D FPGAs under different 3-D fabrication technologies is proposed. Application of the proposed methodology on benchmark circuits demonstrates an improvement in delay, power consumption, and total wire-length of approximately 41%, 32%, and 36%, respectively, as compared to 2-D FPGAs. These improvements are additional to reducing the number of interlayer connections. The fewer interlayer connections are traded off for a higher yield. An area model to evaluate this trade-off is presented. Results indicate that a heterogeneous 3-D FPGA requires 37% less area as compared to a homogeneous 3-D FPGA. Consequently, the heterogeneous FPGAs can exhibit a higher manufacturing yield. A design toolset is also developed to support the design and exploration of various performance metrics for the proposed 3-D FPGAs.

References

  1. Ababei, C., Feng, Y., Goplen, B., Mogal, H., Zhang, T., Bazargan, K., and Sapatnekar, S. 2005. Placement and routing in 3-d integrated circuits. IEEE Des. Test 22, 6, 520--531. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alpert, C. and Kahng, A. 1995. Recent directions in netlist partitioning: A survey. Integration VLSI J. 19, 1, 1--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Betz, V. and Rose, J. 1996. Directional bias and non-uniformity in fpga global routing architectures. In Proceedings of the Digest of Technical Papers. IEEE/ACM International Conference on Computer-Aided Design. 652--659. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Betz, V., Rose, J., and Marquardt, A. 1999. Architecture and CAD for Deep-Submicron FPGAs. Kluwer Academic Publishers. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Beyne, E. 2004. 3-d interconnection and packaging: Impending reality or still a dream? In Proceedings of the International IEEE Solid-State Circuits Conference. Vol. 1. 138--139.Google ScholarGoogle Scholar
  6. Britton, B., Oh, Y., Oswald, W., Nguyen, H., Singh, S., Lee, G., Wai-Bor, L., Spivak, C., Steward, J., and Chen, C. 1994. Second generation orca architecture utilizing 0.5m process enhances the speed and usable gate capacity of fpgas. In Proceedings of the IEEE International Conference on ASIC. 474--478.Google ScholarGoogle Scholar
  7. Das, S., Fan, A., Chen, K. N., Tan, C., Checka, N., and Reif, R. 2004. Technology, performance, and computer aided design of three dimensional integrated circuits. In Proceedings of the International IEEE Symposium on Physical Design. 108--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dong, C., Chen, D., Haruehanroengra, S., and Wang, W. 2007. 3-d nfpga: A reconfigurable architecture for 3-d cmos/nanomaterial hybrid digital circuits. IEEE Trans. Circ. Syst. 54, 11, 2489--2501.Google ScholarGoogle Scholar
  9. Enbody, R. J., Lynn, G., and Tan, K. H. 1991. Routing the 3-d chip. In Proceedings of the IEEE/ACM Design Automation Conference (DAC). 132--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Fang, D., Peng, S., Lafrieda, C., and Manohar, R. 2006. A three-tier asynchronous fpga. In Proceedings of the International VLSI/ULSI Multilevel Interconnection Conference.Google ScholarGoogle Scholar
  11. Gayasen, A., Vijaykrishnan, N., Kandemir, M., and Rahman, A. 2008. Designing a 3-d fpga: Switch box architecture and thermal issues. IEEE Trans. VLSI Syst. 16, 7, 882--893. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gupta, S., Hilbert, M., Hong, S., and Patti, R. 2004. Techniques for producing 3d ics with high-density interconnect. In Proceedings of the VLSI Multi-Level Interconnection Conference.Google ScholarGoogle Scholar
  13. Lamoureux, J. Benchmark circuits. http://www.ece.ubc.ca/~julienl/scripts/stitch_blifs.pl.Google ScholarGoogle Scholar
  14. Le, R., Reda, S., and Bahar, R. 2009. High-performance, cost-effective heterogeneous 3d fpga architectures. In Proceedings of the ACM Great Lakes Symposium on VLSI (GLS-VLSI). 251--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Leijten-Nowak, K. and Meerbergen, J. 2003. An fpga architecture with enhanced datapath functionality. In Proceedings of the International Symposium on Field Programmable Gate Arrays (FPGA). 195--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lin, M., El Gamal, A., Lu, Y., and Wong, S. 2007. Performance benefits of monolithically stacked 3-d fpga. IEEE Trans. Comput. Aid. Desi. Integra. Circu. Syst. 26, 2, 216--229. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. McMurchie, L. and Ebeling, C. 1995. Pathfinder: a negotiation-based performance-driven router for fpgas. In Proceedings of the ACM International Symposium on Field-Programmable Gate Arrays. 111--117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. MCNC. Standard cell benchmark circuits from the Microelectronics Center of North Carolina. http://vlsicad.cs.binghamton.edu/gz/pdworkshop91.tgz.Google ScholarGoogle Scholar
  19. Meleis, W., Leeser, M., Zavracky, P., and Vai, M. 1997. Architectural design of a three dimensional fpga. In Proceedings of the 17th Conference on Advanced Research in VLSI. 256--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Pavlidis, V. F. and Friedman, E. G. 2009. Three-Dimensional Integrated Circuit Design. Morgan Kaufmann Publishers. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Rahman, A. 2001. System-level performance evaluation of three-dimensional integrated circuits. Ph.D. thesis, Department of Electrical and Computer Science, Massachusetts Insitute of Technology.Google ScholarGoogle Scholar
  22. Roy, J., Adya, S., Papa, D., and Markov, I. 2006. Min-cut floorplacement. IEEE Trans. Comput. Aid. Desi. Integr. Circ. Syst. 25, 7, 1313--1326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Savidis, I. and Friedman, E. 2008. Electrical modeling and characterization of 3-d vias. In Proceedings of the International IEEE Symposium on Circuits and Systems (ISCAS). 784--787.Google ScholarGoogle Scholar
  24. Savidis, I. and Friedman, E. 2009. Closed-form expressions of 3-d via resistance, inductance, and capacitance. IEEE Trans. Electron Dev. 56, 9, 1873--1881.Google ScholarGoogle ScholarCross RefCross Ref
  25. Selvakkumaran, N. and Karypis, G. 2006. Multiobjective hypergraph-partitioning algorithms for cut and maximum subdomain-degree minimization. IEEE Trans. Comput. Aid. Desi. Integr. Circ. Syst. 25, 3, 504--517. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Siozios, K., Bartzas, A., and Soudris, D. 2008. Architecture-level exploration of alternative interconnection schemes targeting 3d fpgas: A software-supported methodology. Int. J. Reconfig. Comput.Google ScholarGoogle Scholar
  27. Siozios, K., Papanikolaou, A., and Soudris, D. 2008b. A method and tool for early design/technology search-space exploration for 3d ics. In Proceedings of the IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC). 359--364.Google ScholarGoogle Scholar
  28. Siozios, K., Pavlidis, V. F., and Soudris, D. 2009. A software-supported methodology for exploring interconnection architectures targeting 3-d fpgas. In Proceedings of the Design, Automation and Testing in Europe (DATE). 172--177. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Siozios, K. and Soudris, D. 2008. A power-aware placement and routing algorithm targeting 3d fpgas. J. Low-Power Electron. 4, 3, 275--289.Google ScholarGoogle ScholarCross RefCross Ref
  30. Topol, A., Tulipe, D., Shi, L., Frank, D., Bernstein, K., Steen, S., Kuman, A., Singco, G., Young, A., Guarini, K., and Ieong, M. 2006. Three-dimensional integrated circuits. IBM J. Resour. Devel. 50, 4/5, 491--506. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Tredennick, N. and Shimamoto, B. 2003. The rise of reconfigurable systems. In Engineering of Reconfigurable Systems and Algorithms. 3--12.Google ScholarGoogle Scholar
  32. Velenis, D., Stucchi, M., Marinissen, E. J., and Beyne, E. 2009. Impact of design choices on 3d sic manufacturing cost. In Proceedings of the Workshop on 3-D Integration, at Design, Automation, and Testing in Europe Conference (DATE).Google ScholarGoogle Scholar
  33. Wang, G., Sivaswamy, S., Ababei, C., Bazargan, K., Kastner, R., and Bozorgzadeh, E. 2006. Statistical analysis and design of harp routing pattern fpgas. IEEE Trans. Comput. Aid. Desi. Integr. Circ. Syst. 25, 10, 2088--2102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Weerasekera, R., Pamunuwa, D., Zheng, L. R., and Tenhunnen, H. 2009. Two-dimensional and three-dimensional integration of heterogeneous electronic systems under cost, performance, and technological constraints. IEEE Trans. Comput. Aid. Des. Integr. Circu. Syst. 28, 8, 1237--1250. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. XILINX. http://www.xilinx.com.Google ScholarGoogle Scholar
  36. Yu, C. 2006. The 3rd dimension—more life for Moore's law. In Proceedings of the International Microsystems, Packaging, Assembly Conference. 1--6.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A novel framework for exploring 3-D FPGAs with heterogeneous interconnect fabric

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Reconfigurable Technology and Systems
      ACM Transactions on Reconfigurable Technology and Systems  Volume 5, Issue 1
      March 2012
      148 pages
      ISSN:1936-7406
      EISSN:1936-7414
      DOI:10.1145/2133352
      Issue’s Table of Contents

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 23 March 2012
      • Revised: 1 October 2011
      • Accepted: 1 August 2011
      • Received: 1 July 2010
      Published in trets Volume 5, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader