skip to main content
10.1145/2185216.2185271acmconferencesArticle/Chapter ViewAbstractPublication PagesacwrConference Proceedingsconference-collections
research-article

Business-management-inspired sensor data fusion

Authors Info & Claims
Published:18 December 2011Publication History

ABSTRACT

We apply a new type of algorithm for sensor data fusion that was originally developed for estimation of business indicators. The origin of the MCMC algorithm SamPro is the consideration of uncertainty in business indicators, such as profit, sales, and cost, which results from measurement errors or forecasting. Furthermore, the SamPro algorithm uses model-based redundancy to generate virtual measurements; it is able to cope with and can reduce uncertainty of metrical data, including different and even nonparametric data distributions. In this paper, we present an adaptation of the algorithm focused on (distributed) sensor measurements. In such scenarios, the information redundancy bases on multi-modal sensors. Those results can be fused directly or after model based transformations. We validate our approach in a localization scenario fusing laser distance measurements, camera images, and on-board odometry to estimate the current position of a mobile robot. For this purpose we utilize sensor models for each sensor, including specific sensor faults and noise behavior, to generate and fuse virtual sensor measurement.

References

  1. F. Aldrich. Smart homes: past, present and future. Inside the smart home, pages 17--39, 2003.Google ScholarGoogle Scholar
  2. K. Ball, D. Lyon, D. M. Wood, C. Norris, and C. Raab. A Report on the Surveillance Society. Technical report, Report for the Information Commissioner by the surveillance studies network, September 2006.Google ScholarGoogle Scholar
  3. D. P. Ballou and G. K. Tayi. Enhancing data quality in data warehouse environments. Communications of the ACM, 42(1):73--78, January 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems. In MDM '01: Proceedings of the Second International Conference on Mobile Data Management, pages 3--14, London, UK, 2001. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Boskovitz, R. Gore, and M. Hegland. A logical formalisation of the Fellegi-Holt method of data cleaning. In Advances in Intelligent Data Analysis, IDA 2003, volume 2810 of Lecture Notes in Computer Science, pages 554--565. Springer-Verlag, 2003.Google ScholarGoogle Scholar
  6. R. G. Brown and P. Y. C. Hwang. Introduction to random signals and applied Kalman filtering: with MATLAB exercises and solutions. John Wiley and Sons, 1997.Google ScholarGoogle Scholar
  7. E. Cho, S. S. Iyengar, K. Chakrabarty, and H. Qi, editors. A new fault tolerant sensor integration function satisfying local Lipschitz condition, 2000.Google ScholarGoogle Scholar
  8. D. Dubois and H. Prade. Possibility Theory and its applications: a retrospective and prospective view. In G. D. Riccia, D. Dubois, R. Kruse, and H.-J. Lenz, editors, Decision theory and multi-agent planning, CISM Course and Lectures n° 482, pages 89--100. Springer, http://www.springerlink.com, 2006.Google ScholarGoogle Scholar
  9. I. P. Fellegi and D. Holt. A systematic approach to automatic edit and imputation. Journal of the American Statistical Association, 71(353):17--35, March 1976.Google ScholarGoogle ScholarCross RefCross Ref
  10. P. Fiorini and E. Prassler. Cleaning and household robots: A technology survey. Autonomous robots, 9(3):227--235, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. R. Groß and M. Dorigo. Evolving a cooperative transport behavior for two simple robots. In Artificial Evolution -- 6th Internationa Conference, Evolution Artificielle (EA 2003), 2936 of LNCS, pages 305--317, Berlin, Germany, 2004. Springer.Google ScholarGoogle Scholar
  12. T. Haenselmann, M. Busse, T. King and W. Effelsberg. Unequal Weighting for Improved Positioning in GPS-Less Sensor Networks EURASIP Journal on Advances in Signal Processing, 1--9, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. W. K. Hastings. Monte carlo sampling methods using markov chains and their applications. Biometrika, 57:97--109, 1970.Google ScholarGoogle ScholarCross RefCross Ref
  14. Hokuyo Automatic Co. Hokuyo Scanning Laser Range Finder URG-04LX Data Sheet, 2005.Google ScholarGoogle Scholar
  15. J. Kaiser, L. B. Becker, S. Zug, and M. Schulze. Supporting independent development, deployment and cooperation of autonomous objects in distributed control systems. In 9th International Symposium on Autonomous Decentralized Systems (ISADS 2009), Athens, Greece, March 23--25 2009.Google ScholarGoogle ScholarCross RefCross Ref
  16. J. Kaiser, M. Schulze, S. Zug, C. Cardeira, and F. Carreira. Sentient objects for designing and controlling service robots. In Proccedings of IFAC'08, volume 17th International Federation of Automatic Control World Congress, Seoul, Korea, July 6--11 2008.Google ScholarGoogle ScholarCross RefCross Ref
  17. J. Kaiser, S. Zug, M. Schulze, and H. Piontek. Exploiting self-descriptions for checking interoperations between embedded components. In International Workshop on Dependable Network Computing and Mobile Systems (DNCMS 08), pages 41--45, Napoli, Italy, October 2008.Google ScholarGoogle Scholar
  18. R. E. Kalman. A new approach to linear filtering and prediction problems. Transactions of the ASME - Journal of Basic Engineering, 82:35--45, 1960.Google ScholarGoogle Scholar
  19. A. Klein and W. Lehner. Representing data quality in sensor data streaming environments. J. Data and Information Quality, 1(2):1--28, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. V. Köppen. Improving the Quality of Indicator Systems by MoSi -- Methodology and Evaluation. PhD thesis, Freie Universität Berlin, 2008.Google ScholarGoogle Scholar
  21. V. Köppen, M. Allgeier, and H.-J. Lenz. Balanced scorecard simulator -- a tool for stochastic business figures. In R. Decker and H.-J. Lenz, editors, Advances in Data Analysis, pages 457--464, Berlin, Heidelberg, 2007. Springer.Google ScholarGoogle Scholar
  22. V. Köppen and H.-J. Lenz. Simulation of non-linear stochastic equation systems. In A. P. S. M. Ermakov, V. B. Melas, editor, Proceeding of the Fifth Workshop on Simulation, pages 373--378, St. Petersburg, Russia, July 2005. NII Chemistry Saint Petersburg University Publishers.Google ScholarGoogle Scholar
  23. V. Köppen and H.-J. Lenz. A comparison between probabilistic and possibilistic models for data validation. In V. M. Rizzi A, editor, Proceeding in Computational Statistics COMPSTAT 2006, pages 1533--1541, Rome, 2006.Google ScholarGoogle Scholar
  24. V. Köppen and H.-J. Lenz. Data quality control based on metric data models. In H.-J. Lenz, P.-T. Wilrich, and W. Schmid, editors, Frontiers in Statistical Quality Control 9, pages 263--276. Physica Verlag, 2010.Google ScholarGoogle Scholar
  25. S. S. Kuznets. Economic Growth of Nations: Total Output and Production Structure. Harvard University Press, 1971.Google ScholarGoogle ScholarCross RefCross Ref
  26. T. Larsen, K. Hansen, N. Andersen, and O. Ravn. Design of Kalman filters for mobile robots; evaluation of the kinematic and odometric approach. In IEEE. Int. Conf. Control Applications, volume 2, pages 1021--1026, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  27. H.-J. Lenz, V. Köppen, and R. M. Müller. Edits -- data cleansing at the data entry to assert semantic consistency of metric data. In SSDBM '06: Proceedings of the 18th International Conference on Scientific and Statistical Database Management, pages 235--240, Washington, DC, USA, 2006. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. H.-J. Lenz and E. Rödel. Statistical quality control of data. In P. Gritzmann, R. Hettich, R. Horst, and E. Sachs, editors, 16th Symposium on Operations Research, pages 341--346. Physica Verlag, Heidelberg, 1991.Google ScholarGoogle Scholar
  29. N. Leonard, D. Paley, F. Lekien, R. Sepulchre, D. Fratantoni, and R. Davis. Collective motion, sensor networks, and ocean sampling. Procedings of the IEEE, 95(1):48--74, January 2007.Google ScholarGoogle ScholarCross RefCross Ref
  30. U. Leser and F. Naumann. Informationsintegration: Architekturen und Methoden zur Integration verteilter und heterogener Datenquellen. dpunkt, 2006.Google ScholarGoogle Scholar
  31. S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: an acquisitional query processing system for sensor networks. ACM Trans. Database Syst., 30(1):122--173, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. A. Martinelli and R. Siegwart. Estimating the odometry error of a mobile robot during navigation. In European Conference on Mobile Robots ECMR, Warsaw, Poland, September 2003.Google ScholarGoogle Scholar
  33. K. Marzullo. Tolerating failures of continuous-valued sensors. ACM Transactions on Computer Systems (TOCS), 8(4):284--304, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. A. Mohamed and K. Schwarz. Adaptive Kalman filtering for INS/GPS. Journal of Geodesy, 73(4):193--203, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  35. R. A. Müller. Is there any need for long-term forecasting methods? In B. Schmid and R. Signer, editors, Information on Complex Systems -- Representation and Inference, number 61 in Berichte zur Orts-, Regional- und Landesplanung, pages 9--28, Zürich, 1988. Institut für Orts-, Regional- und Landesplanung ETH Zürich, Verlag der Fachvereine.Google ScholarGoogle Scholar
  36. R. M. Müller and H.-J. Lenz. FuzzyCalc -- Analytische Prüfung mit Fuzzymethoden: Theorie, Anwendung, Beispiele. In J. Geldermann and H. Rommelfanger, editors, Einsatz von Fuzzy Sets, Neuronalen Netzen und Künstlicher Intelligenz in industrieller Produktion und Umweltforschung, number 725 in Fortschritt-Berichte VDI, Reihe 10, pages 123--142, Düsseldorf, 2003. VDI-Verlag.Google ScholarGoogle Scholar
  37. Robot World Cup Initiative. RoboCupJunior Soccer. http://www.robocup.org/robocup-junior/soccer/, 2010.Google ScholarGoogle Scholar
  38. G. Rose. Mobile Phones as Traffic Probes: Practices, Prospects and issues. Transport Reviews, 26(3):275--291, May 2006.Google ScholarGoogle ScholarCross RefCross Ref
  39. P. A. Samuelson and W. D. Nordhaus. Volkswirtschaftslehre. Ueberreuter, Wien, 15 edition, 1998.Google ScholarGoogle Scholar
  40. B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan, and S. Sastry. Kalman filtering with intermittent observations. Automatic Control, IEEE Transactions on, 49(9):1453--1464, 2004.Google ScholarGoogle Scholar
  41. R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and D. Estrin. Habitat monitoring with sensor networks. Communications of the ACM, 47(6):34--40, June 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Y. Wand and R. Y. Wang. Anchoring data quality dimensions in ontological foundations.Communications of the ACM, Vol. 39, No11:86--96, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. E. W. Weisstein. Normal sum distribution, 2010. MathWorld - A Wolfram Web Resource.Google ScholarGoogle Scholar
  44. W. E. Winkler. General methods and algorithms for modeling and imputing discrete data under a variety of constraints. Statistical Research Division Research Report Series 2008-08, U. S. Census Bureau, Statistical Research Division, October 2008.Google ScholarGoogle Scholar
  45. Y. Yao and J. Gehrke. The cougar approach to in-network query processing in sensor networks. SIGMOD Rec., 31(3):9--18, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Y. Zhao. Standardization of mobile phone positioning for 3G systems. Communications Magazine, IEEE, 40(7):108--116, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. S. Zug, A. Dietrich, and J. Kaiser. An architecture for a dependable distributed sensor system. IEEE Transactions on Instrumentation and Measurement 2010 - accepted.Google ScholarGoogle Scholar
  48. S. Zug and J. Kaiser. An approach towards smart fault-tolerant sensors. In Procedings of the International Workshop on Robotics and Sensors Environments (ROSE 2009), Lecco, Italy, November 2009.Google ScholarGoogle ScholarCross RefCross Ref
  49. S. Zug, M. Schulze, A. Dietrich, and J. Kaiser. programming abstractions and middleware for building control systems as networks of smart sensors and actuators. In Proceedings of Emerging Technologies in Factory Automation (ETFA '10) - accepted, Bilbao, Spain, September 2010.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    ACWR '11: Proceedings of the 1st International Conference on Wireless Technologies for Humanitarian Relief
    December 2011
    517 pages
    ISBN:9781450310116
    DOI:10.1145/2185216

    Copyright © 2011 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 18 December 2011

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
  • Article Metrics

    • Downloads (Last 12 months)14
    • Downloads (Last 6 weeks)4

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader