skip to main content
research-article

Lagrangian vortex sheets for animating fluids

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

Buoyant turbulent smoke plumes with a sharp smoke-air interface, such as volcanic plumes, are notoriously hard to simulate. The surface clearly shows small-scale turbulent structures which are costly to resolve. In addition, the turbulence onset is directly visible at the interface, and is not captured by commonly used turbulence models. We present a novel approach that employs a triangle mesh as a high-resolution surface representation combined with a coarse Eulerian solver. On the mesh, we solve the interfacial vortex sheet equations, which allows us to accurately simulate buoyancy induced turbulence. For complex boundary conditions we propose an orthogonal turbulence model that handles vortices caused by obstacle interaction. In addition, we demonstrate a re-sampling scheme to remove surfaces that are hidden inside the bulk volume. In this way we are able to achieve highly detailed simulations of turbulent plumes efficiently.

Skip Supplemental Material Section

Supplemental Material

tp225_12.mp4

mp4

26.2 MB

References

  1. Angelidis, A., Neyret, F., Singh, K., and Nowrouzezahrai, D. 2006. A controllable, fast and stable basis for vortex based smoke simulation. In ACM SIGGRAPH/EG Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bargteil, A. W., Goktekin, T. G., O'Brien, J. F., and Strain, J. A. 2006. A semi-lagrangian contouring method for fluid simulation. ACM Transactions on Graphics 25, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Brady, M., Leonard, A., and Pullin, D. I. 1998. Regularized vortex sheet evolution in three dimensions. J. Comput. Phys. 146, 520--545. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Brochu, T., and Bridson, R. 2009. Animating smoke as a surface. SCA posters.Google ScholarGoogle Scholar
  5. Chentanez, N., and Mueller, M. 2011. Real-time eulerian water simulation using a restricted tall cell grid. ACM Trans. Graph. 30, 82:1--82:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chorin, A. J., and Bernard, P. S. 1973. Discretization of a vortex sheet on a roll-up. J. Comp. Phys. 13, 423--429.Google ScholarGoogle ScholarCross RefCross Ref
  7. Cowper, G. 1973. Gaussian quadrature formulas for triangles. Int. J. Num. Methods 7, 3, 405--408.Google ScholarGoogle ScholarCross RefCross Ref
  8. Desbrun, M., Meyer, M., Schröder, P., and Barr, A. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. Proc. SIGGRAPH, 317--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002. A hybrid particle level set method for improved interface capturing. J. Comp. Phys. 183, 83--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Kim, T., Thuerey, N., James, D., and Gross, M. 2008. Wavelet turbulence for fluid simulation. ACM SIGGRAPH Papers 27, 3 (Aug), Article 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Kim, D., Song, O.-Y., and Ko, H.-S. 2009. Stretching and wiggling liquids. ACM Transactions on Graphics 28, 5, 120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kolluri, R. 2005. Provably good moving least squares. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms, 1008--1018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Launder, B. E., and Sharma, D. B. 1974. Applications of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf. 1, 1031--138.Google ScholarGoogle ScholarCross RefCross Ref
  14. Leonard, A. 1980. Vortex methods for flow simulation. J. Comput. Phys. 37, 289--335.Google ScholarGoogle ScholarCross RefCross Ref
  15. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. Proceedings of ACM SIGGRAPH, 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lozano, A., Garca-Olivares, A., and Dopazo, C. 1998. The instability growth leading to a liquid sheet breakup. Phys. Fluids 10, 9, 2188--2197.Google ScholarGoogle ScholarCross RefCross Ref
  17. Meng, J. C. S. 1978. The physics of vortex-ring evolution in a stratified and shearing environment. J. Fluid Mech., 3, 455--469.Google ScholarGoogle ScholarCross RefCross Ref
  18. Mullen, P., Crane, K., Pavlov, D., Tong, Y., and Desbrun, M. 2009. Energy-Preserving Integrators for Fluid Animation. ACM SIGGRAPH Papers 28, 3 (Aug), Article 38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Müller, M., Solenthaler, B., Keiser, R., and Gross, M. 2005. Particle-based fluid-fluid interaction. ACM SIGGRAPH/EG Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Narain, R., Sewall, J., Carlson, M., and Lin, M. C. 2008. Fast animation of turbulence using energy transport and procedural synthesis. ACM SIGGRAPH Asia papers, Article 166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Pfaff, T., Thuerey, N., Selle, A., and Gross, M. 2009. Synthetic turbulence using artificial boundary layers. ACM Transactions on Graphics 28, 5, 121:1--121:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Pfaff, T., Thuerey, N., Cohen, J., Tariq, S., and Gross, M. 2010. Scalable fluid simulation using anisotropic turbulence particles. SIGGRAPH Asia papers, 174:1--174:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Pope, S. B. 2000. Turbulent Flows. Cambridge University Press.Google ScholarGoogle Scholar
  24. Rasmussen, N., Nguyen, D. Q., Geiger, W., and Fedkiw, R. 2003. Smoke simulation for large scale phenomena. In Proceedings of ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Rosenhead, L. 1931. The formation of vorticies from a surface of discontinuity. Proc. Roy. Soc. London 134, 170--192.Google ScholarGoogle ScholarCross RefCross Ref
  26. Schechter, H., and Bridson, R. 2008. Evolving sub-grid turbulence for smoke animation. In Proceedings of the 2008 ACM/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. Proceedings of ACM SIGGRAPH 24, 3, 910--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. 2008. An unconditionally stable MacCormack method. Journal of Scientific Computing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Spalart, P. R., and Allmaras, S. R. 1992. A one-equation turbulence model for aerodynamic flows. AIAA Paper 92, 0439.Google ScholarGoogle Scholar
  30. Stam, J., and Fiume, E. 1993. Turbulent wind fields for gaseous phenomena. In Proceedings of ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Stam, J. 1999. Stable fluids. In Proceedings of ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Stock, M., Dahm, W., and Tryggvason, G. 2008. Impact of a vortex ring on a density interface using a regularized inviscid vortex sheet method. J. Comp. Phys. 227, 9021--9043. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Tryggvason, G., and Aref, H. 1983. Numerical experiments on hele-shaw flow with a sharp interface. J. Fluid Mech., 1--30.Google ScholarGoogle Scholar
  34. Weissmann, S., and Pinkall, U. 2010. Filament-based smoke with vortex shedding and variational reconnection. ACM Transactions on Graphics 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wojtan, C., Thuerey, N., Gross, M., and Turk, G. 2010. Physics-inspired topology changes for thin fluid features. ACM Transactions on Graphics 29, 3 (July), 8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Wu, J.-Z. 1995. A theory of three-dimensional interfacial vorticity dynamics. Phys. Fluids 7, 10, 2375--2395.Google ScholarGoogle ScholarCross RefCross Ref
  37. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. Proceedings of ACM SIGGRAPH 24, 3, 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Lagrangian vortex sheets for animating fluids

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 31, Issue 4
      July 2012
      935 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2185520
      Issue’s Table of Contents

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 July 2012
      Published in tog Volume 31, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader