skip to main content
research-article

Discrete viscous sheets

Published: 01 July 2012 Publication History

Abstract

We present the first reduced-dimensional technique to simulate the dynamics of thin sheets of viscous incompressible liquid in three dimensions. Beginning from a discrete Lagrangian model for elastic thin shells, we apply the Stokes-Rayleigh analogy to derive a simple yet consistent model for viscous forces. We incorporate nonlinear surface tension forces with a formulation based on minimizing discrete surface area, and preserve the quality of triangular mesh elements through local remeshing operations. Simultaneously, we track and evolve the thickness of each triangle to exactly conserve liquid volume. This approach enables the simulation of extremely thin sheets of viscous liquids, which are difficult to animate with existing volumetric approaches. We demonstrate our method with examples of several characteristic viscous sheet behaviors, including stretching, buckling, sagging, and wrinkling.

Supplementary Material

JPG File (tp226_12.jpg)
ZIP File (a113-batty.zip)
Supplemental material.
MP4 File (tp226_12.mp4)

References

[1]
Ando, R., and Tsuruno, R. 2011. A particle-based method for preserving fluid sheets. In Symposium on Computer Animation, 7--16.
[2]
Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In SIGGRAPH, vol. 32, 43--54.
[3]
Bargteil, A. W., Hodgins, J. K., Wojtan, C., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. (SIGGRAPH) 26, 3, 16.
[4]
Batchelor, G. K. 1967. An Introduction to Fluid Dynamics. Cambridge University Press.
[5]
Batty, C., and Bridson, R. 2008. Accurate viscous free surfaces for buckling, coiling, and rotating liquids. In Symposium on Computer Animation, 219--228.
[6]
Batty, C., and Houston, B. 2011. A simple finite volume method for adaptive viscous liquids. In Symposium on Computer Animation, 111--118.
[7]
Benjamin, T. B., and Mullin, T. 1988. Buckling instabilities in layers of viscous liquid subjected to shearing. J. Fluid Mech.1 195, 523--540.
[8]
Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., and Grinspun, E. 2008. Discrete elastic rods. ACM Trans. Graph. (SIGGRAPH) 27, 3, 63.
[9]
Bergou, M., Audoly, B., Vouga, E., Wardetzky, M., and Grinspun, E. 2010. Discrete viscous threads. ACM Trans. Graph. (SIGGRAPH) 29, 4, 116.
[10]
Bertails, F., Audoly, B., Cani, M.-P., Leroy, F., Querleux, B., and Lévêque, J.-L. 2006. Super-helices for predicting the dynamics of natural hair. ACM Trans. Graph. (SIGGRAPH) 25, 3 (July), 1180--1187.
[11]
Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Symposium on Computer Animation, Eurographics Association, 28--36.
[12]
Bridson, R. 2008. Fluid Simulation for Computer Graphics. A. K. Peters, Ltd.
[13]
Brochu, T., and Bridson, R. 2009. Robust topological operations for dynamic explicit surfaces. SIAM J. Sci. Comput. 31, 4, 2472--2493.
[14]
Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Trans. Graph. (SIGGRAPH) 29, 4, 47.
[15]
Buckmaster, J. D., A. Nachman, and Ting, L. 1975. The buckling and stretching of a viscida. J. Fluid Mech. 69, 1, 1--20.
[16]
Carlson, M., Mucha, P. J., Van Horn, R., and Turk, G. 2002. Melting and flowing. In Symposium on Computer Animation, 167--174.
[17]
Chentanez, N., Feldman, B. E., Labelle, F., O'Brien, J. F., and Shewchuk, J. R. 2007. Liquid simulation on lattice-based tetrahedral meshes. In Symposium on Computer Animation, 219--228.
[18]
da Silveira, R., Chaieb, S., and Mahadevan, L. 2000. Rippling instability of a collapsing bubble. Science 287, 5457, 1468--1471.
[19]
English, R. E., and Bridson, R. 2008. Animating developable surfaces using nonconforming elements. ACM Trans. Graph. (SIGGRAPH) 27, 3, 66.
[20]
Erleben, K., Misztal, M., and Baerentzen, A. 2011. Mathematical foundation of the optimization-based fluid animation method. In Symposium on Computer Animation, 101--110.
[21]
Garg, A., Grinspun, E., Wardetzky, M., and Zorin, D. 2007. Cubic shells. In Symposium on Computer Animation, 91--98.
[22]
Gingold, Y., Secord, A., Han, J. Y., Grinspun, E., and Zorin, D. 2004. A discrete model for inelastic deformation of thin shells. Tech. rep., New York University.
[23]
Grinspun, E., Hirani, A. N., Schröder, P., and Desbrun, M. 2003. Discrete shells. In Symposium on Computer Animation, Eurographics Association, 62--67.
[24]
Hasegawa, S., and Fujii, N. 2003. Real-time rigid body simulation based on volumetric penalty method. In HAPTICS 2003, 326.
[25]
Howell, P. D. 1996. Models for thin viscous sheets. European Journal of Applied Mathematics 7, 321--343.
[26]
Hutchinson, D., Preston, M., and Hewitt, T. 1996. Adaptive refinement for mass/spring simulations. In Eurographics Workshop on Computer Animation and Simulation, 31--45.
[27]
Kass, M., and Miller, G. 1990. Rapid, stable fluid dynamics for computer graphics. In SIGGRAPH, 49--57.
[28]
Kharevych, L., Yang, W., Tong, Y., Kanso, E., Marsden, J. E., Schröder, P., and Desbrun, M. 2006. Geometric, variational integrators for computer animation. In Symposium on Computer Animation, 43--51.
[29]
Martin, S., Kaufmann, P., Botsch, M., Grinspun, E., and Gross, M. 2010. Unified simulation of elastic rods, shells, and solids. ACM Trans. Graph. (SIGGRAPH) 29, 4, 39.
[30]
Misztal, M., Bridson, R., Erleben, K., Baerentzen, A., and Anton, F. 2010. Optimization-based fluid simulation on unstructured meshes. In VRIPHYS.
[31]
Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Symposium on Computer Animation, 154--159.
[32]
Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point-based animation of elastic, plastic, and melting objects. In Symposium on Computer Animation, 141--151.
[33]
Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. 2006. Physically based deformable models in computer graphics. Computer Graphics Forum 25, 4, 809--836.
[34]
Pai, D. K. 2002. STRANDS: Interactive simulation of thin solids using Cosserat models. Computer Graphics Forum (Eurographics) 21, 3, 347--352.
[35]
Pearson, J. R. A., and Petrie, C. J. S. 1970. The flow of a tubular film. Part 1: Formal mathematical representation. J. Fluid Mech. 40, 1, 1--19.
[36]
Radovitzky, R., and Ortiz, M. 1999. Error estimation and adaptive meshing in strongly nonlinear dynamic problems. Comput. Methods Appl. Mech. Eng 172, 1--4, 203--240.
[37]
Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In Symposium on Computer Animation, 193--202.
[38]
Rayleigh, J. W. S. 1945. Theory of Sound, vol. 2. Dover Publications.
[39]
Ribe, N. 2001. Bending and stretching of thin viscous sheets. Journal of Fluid Mechanics 433, 135--160.
[40]
Ribe, N. 2002. A general theory for the dynamics of thin viscous sheets. J. Fluid Mech. 457, 255--283.
[41]
Ribe, N. 2003. Periodic folding of viscous sheets. Physical Review E 68, 3, 036305.
[42]
Savva, N. 2007. Viscous fluid sheets. PhD thesis, Massachusetts Institute of Technology.
[43]
Skorobogatiy, M., and Mahadevan, L. 2000. Folding of viscous sheets and filaments. Europhysics Letters 52, 5, 532--538.
[44]
Spillman, J., and Teschner, M. 2007. CORDE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In Symposium on Computer Animation, 63--72.
[45]
Stokes, G. G. 1845. On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Transactions of the Cambridge Philosophical Society. Vol. 8.
[46]
Teichman, J., and Mahadevan, L. 2003. The viscous catenary. Journal of Fluid Mechanics 478, 71--80.
[47]
Teichmann, J. A. 2002. Wrinkling and sagging viscous sheets. PhD thesis, MIT.
[48]
Villard, J., and Borouchaki, H. 2005. Adaptive meshing for cloth animation. Engineering with Computers 20, 4, 333--341.
[49]
Wang, H., O'Brien, J. F., and Ramamoorthi, R. 2010. Multi-resolution isotropic strain limiting. ACM Trans. Graph. (SIGGRAPH Asia) 29, 6, 156.
[50]
Wicke, M., Steinemann, D., and Gross, M. 2005. Efficient animation of point-sampled thin shells. Computer Graphics Forum (Eurographics) 24, 3, 667--676.
[51]
Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O'Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. (SIGGRAPH) 29, 4, 49.
[52]
Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. (SIGGRAPH) 27, 3, 47.
[53]
Wojtan, C., Thuerey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. ACM Trans. Graph. (SIGGRAPH) 28, 3, 76.
[54]
Wojtan, C., Thuerey, N., Gross, M., and Turk, G. 2010. Physically-inspired topology changes for thin fluid features. ACM Trans. Graph. (SIGGRAPH) 29, 3.
[55]
Yang, H. T. Y., Saigal, S., Masud, A., and Kapania, R. K. 2000. A survey of recent shell finite elements. Int. J. Numer. Methods Eng., 47, 101--127.
[56]
Zhang, D., and Yuen, M. M. F. 2001. Cloth simulation using multilevel meshes. Computers and Graphics 25, 3, 383--389.
[57]
Zhang, Y., Wang, H., Wang, S., Tong, Y., and Zhou, K. 2011. A deformable surface model for real-time water drop animation. IEEE TVCG 99.

Cited By

View all
  • (2024)Unified Pressure, Surface Tension and Friction for SPH FluidsACM Transactions on Graphics10.1145/370803444:1(1-28)Online publication date: 10-Dec-2024
  • (2024)Augmented Incremental Potential Contact for Sticky InteractionsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.329565630:8(5596-5608)Online publication date: 1-Aug-2024
  • (2024)A part-level simulation method considering thermal-mechanical contact between multiple filaments for material extrusion processesVirtual and Physical Prototyping10.1080/17452759.2024.244194420:1Online publication date: 31-Dec-2024
  • Show More Cited By

Index Terms

  1. Discrete viscous sheets

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 31, Issue 4
    July 2012
    935 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2185520
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 July 2012
    Published in TOG Volume 31, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. fluid simulation
    2. thin shells
    3. viscous sheets

    Qualifiers

    • Research-article

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)40
    • Downloads (Last 6 weeks)4
    Reflects downloads up to 03 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Unified Pressure, Surface Tension and Friction for SPH FluidsACM Transactions on Graphics10.1145/370803444:1(1-28)Online publication date: 10-Dec-2024
    • (2024)Augmented Incremental Potential Contact for Sticky InteractionsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.329565630:8(5596-5608)Online publication date: 1-Aug-2024
    • (2024)A part-level simulation method considering thermal-mechanical contact between multiple filaments for material extrusion processesVirtual and Physical Prototyping10.1080/17452759.2024.244194420:1Online publication date: 31-Dec-2024
    • (2024)Improved Electromechanical Coupling in Silicone-Based Elastomer Thin Membranes Filled by Silica-Coated Multiwalled Carbon NanotubesACS Applied Engineering Materials10.1021/acsaenm.3c006782:2(376-387)Online publication date: 18-Jan-2024
    • (2024)Dual-mechanism surface tension model for SPH-based simulationThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-024-03474-440:7(4765-4776)Online publication date: 1-Jul-2024
    • (2024)A two‐way coupling approach for simulating bouncing dropletsInternational Journal for Numerical Methods in Engineering10.1002/nme.7592Online publication date: 13-Oct-2024
    • (2023)Implicit Surface Tension for SPH Fluid SimulationACM Transactions on Graphics10.1145/363193643:1(1-14)Online publication date: 30-Nov-2023
    • (2023)PolyStokes: A Polynomial Model Reduction Method for Viscous Fluid SimulationACM Transactions on Graphics10.1145/359214642:4(1-13)Online publication date: 26-Jul-2023
    • (2023)A Contact Proxy Splitting Method for Lagrangian Solid-Fluid CouplingACM Transactions on Graphics10.1145/359211542:4(1-14)Online publication date: 26-Jul-2023
    • (2022)Hydrophobic and Hydrophilic Solid-Fluid InteractionACM Transactions on Graphics10.1145/3550454.355547841:6(1-15)Online publication date: 30-Nov-2022
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media