skip to main content
10.1145/2187836.2187915acmotherconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article

Joint relevance and freshness learning from clickthroughs for news search

Published:16 April 2012Publication History

ABSTRACT

In contrast to traditional Web search, where topical relevance is often the main selection criterion, news search is characterized by the increased importance of freshness. However, the estimation of relevance and freshness, and especially the relative importance of these two aspects, are highly specific to the query and the time when the query was issued. In this work, we propose a unified framework for modeling the topical relevance and freshness, as well as their relative importance, based on click logs. We use click statistics and content analysis techniques to define a set of temporal features, which predict the right mix of freshness and relevance for a given query. Experimental results on both historical click data and editorial judgments demonstrate the effectiveness of the proposed approach.

References

  1. D. Agarwal, B.-C. Chen, P. Elango, and X. Wang. Click shaping to optimize multiple objectives. In KDD, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. E. Agichtein, E. Brill, S. Dumais, and R. Ragno. Learning user interaction models for predicting web search result preferences. In SIGIR, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information retrieval, volume 463. ACM press New York, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN systems, 30(1--7):107--117, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li. Learning to rank: from pairwise approach to listwise approach. In ICML, pages 129--136. ACM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. H. Chernoff and E. Lehmann. The use of maximum likelihood estimates in $\chi$2 tests for goodness of fit. The Annals of Mathematical Statistics, pages 579--586, 1954.Google ScholarGoogle ScholarCross RefCross Ref
  7. N. Dai, M. Shokouhi, and B. D. Davison. Learning to rank for freshness and relevance. In SIGIR, pages 95--104, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Dong, Y. Chang, Z. Zheng, G. Mishne, J. Bai, R. Zhang, K. Buchner, C. Liao, and F. Diaz. Towards recency ranking in web search. In WSDM, pages 11--20, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Dong, R. Zhang, P. Kolari, J. Bai, F. Diaz, Y. Chang, Z. Zheng, and H. Zha. Time is of the essence: improving recency ranking using twitter data. In WWW, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Efron and G. Golovchinsky. Estimation methods for ranking recent information. In SIGIR, pages 495--504, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. H. Fang, T. Tao, and C. Zhai. A formal study of information retrieval heuristics. In SIGIR, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. K. J\"arvelin and J. Kek\"al\"ainen. Cumulated gain-based evaluation of ir techniques. ACM TOIS, 20(4):422--446, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. T. Joachims. Optimizing search engines using clickthrough data. In KDD, pages 133--142, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately interpreting clickthrough data as implicit feedback. In SIGIR, pages 154--161, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. K. Jones, S. Walker, and S. Robertson. A probabilistic model of information retrieval: development and comparative experiments. Information Processing and Management, 36(6):779--808, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. N. Kanhabua and K. Nørvåg. Determining time of queries for re-ranking search results. Research and Advanced Technology for Digital Libraries, pages 261--272, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Kulkarni, J. Teevan, K. Svore, and S. Dumais. Understanding temporal query dynamics. In WSDM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline evaluation of contextual-bandit-based news article recommendation algorithms. In Proceedings of the fourth ACM WSDM '11, pages 297--306, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. X. Li and W. Croft. Time-based language models. In CIKM, pages 469--475, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. T. Liu. Learning to rank for information retrieval. Foundations and Trends in Information Retrieval, 3(3):225--331, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. T. Moon, L. Li, W. Chu, C. Liao, Z. Zheng, and Y. Chang. Online learning for recency search ranking using real-time user feedback. In CIKM, pages 1501--1504, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. G. Salton and M. McGill. Introduction to modern information retrieval. McGraw-Hill, Inc., 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. K. M. Svore, M. N. Volkovs, and C. J. Burges. Learning to rank with multiple objective functions. In WWW, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. C. Zhai and J. Lafferty. A study of smoothing methods for language models applied to ad hoc information retrieval. In SIGIR, pages 334--342, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Z. Zheng, K. Chen, G. Sun, and H. Zha. A regression framework for learning ranking functions using relative relevance judgments. In SIGIR, pages 287--294, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Joint relevance and freshness learning from clickthroughs for news search

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      WWW '12: Proceedings of the 21st international conference on World Wide Web
      April 2012
      1078 pages
      ISBN:9781450312295
      DOI:10.1145/2187836

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 16 April 2012

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate1,899of8,196submissions,23%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader