skip to main content
10.1145/2261250.2261303acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
research-article

Periodic body-and-bar frameworks

Published:17 June 2012Publication History

ABSTRACT

Flexibility studies of macromolecules modeled as mechanical frameworks rely on computationally expensive, yet numerically imprecise simulations. Much faster approaches for degree-of-freedom counting and rigid component calculations are known for finite structures characterized by theorems of Maxwell-Laman type, but such results are exceedingly rare and difficult to obtain. The situation is even more complex for infinite, periodic structures such as those appearing in the study of crystalline materials. Here, an adequate rigidity theoretical formulation has been proposed only recently, opening the way to a combinatorial treatment.

Abstractions of crystalline materials known as periodic body-and-bar frameworks are made of rigid bodies connected by fixed-length bars and subject to the action of a group of translations. In this paper, we give a Maxwell-Laman characterization for generic minimally rigid periodic body-and-bar frameworks in terms of their quotient graphs. As a consequence we obtain efficient polynomial time algorithms for their recognition based on matroid partition and pebble games.

References

  1. C. S. Borcea and I. Streinu. Periodic frameworks and flexibility. Proceedings of the Royal Society A 8, 466(2121):2633--2649, September 2010.Google ScholarGoogle ScholarCross RefCross Ref
  2. C. S. Borcea and I. Streinu. Minimally rigid periodic graphs. Bulletin of the London Mathematical Society, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  3. C. S. Borcea, I. Streinu, and S. Tanigawa. Periodic body-and-bar frameworks. arXiv:1110.4660, 2011.Google ScholarGoogle Scholar
  4. J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups, volume 290 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York, 3rd edition, 1999.Google ScholarGoogle Scholar
  5. O. Delgado-Friedrichs. Equilibrium placement of periodic graphs and convexity of plane tilings. Discrete and Computational Geometry, 33:67--81, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. V. S. Deshpande, M. F. Ashby, and N. A. Fleck. Foam topology: bending versus stretching dominated architectures. Acta Materialia, 49(6):1035--1040, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  7. G. Dolino. The α-inc-β transitions in quartz: a century of research on displacive phase transitions. Phase Transitions, 21:59--72, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  8. A. Donev and S. Torquato. Energy-efficient actuation in infinite lattice structures. Journal of the Mechanics and Physics of Solids, 51:1459--1475, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  9. M. T. Dove. Theory of displacive phase transitions in minerals. American Mineralogist, 82:213--244, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  10. J. Edmonds. Minimum partition of a matroid into independent sets. J. Res. Nat. Bur. Standards Sect. B, 69B:67--72, 1965.Google ScholarGoogle ScholarCross RefCross Ref
  11. N. Fox, F. Jagodzinski, Y. Li, and I. Streinu. KINARI-Web: A server for protein rigidity analysis. Nucleic Acids Research, 39(Web Server Issue), 2011.Google ScholarGoogle Scholar
  12. A. L. Goodwin. Rigid unit modes and intrinsic flexibility of linearly bridged framework structures. Physical Review B, 74:132302--132312, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  13. S. Guest and J. W. Hutchinson. On the determinacy of repetitive structures. Journal of the Mechanics and Physics of Solids, 51:383--391, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  14. R. Haas, A. Lee, I. Streinu, and L. Theran. Characterizing sparse graphs by map decompositions. Journal of Combinatorial Mathematics and Combinatorial Computing, 62:3--11, 2007.Google ScholarGoogle Scholar
  15. D. Hilbert and S. Cohn-Vossen. Geometry and the Imagination. Chelsea Publishing Company, New York, 1962.Google ScholarGoogle Scholar
  16. R. G. Hutchinson and N. A. Fleck. The structural performance of the periodic truss. Journal of the Mechanics and Physics of Solids, 54:765--782, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  17. B. Jackson and T. Jordán. The generic rank of body-bar-and-hinge frameworks. European Journal of Combinatorics, 31(2):574--588, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. V. Kapko, M. M. J. Treacy, M. F. Thorpe, and S. Guest. On the collapse of locally isostatic networks. Proceedings of the Royal Society A, 465:3517--3530, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  19. N. Katoh and S. Tanigawa. A proof of the molecular conjecture. Discrete and Computational Geometry, 45(4):647--700, 2011. Prelim. version in Proc. Symp. Comp. Geometry (SoCG), 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Kotani and T. Sunada. Standard realizations of crystal lattices via harmonic maps. Transactions of the American Mathematical Society, 353:1--20, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  21. G. Laman. On graphs and rigidity of plane skeletal structures. Journal of Engineering Mathematics, 4:331--340, 1970.Google ScholarGoogle ScholarCross RefCross Ref
  22. A. Lee and I. Streinu. Pebble game algorithms and sparse graphs. Discrete Mathematics, 308(8):1425--1437, April 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. Lima-de Faria, editor. Historical Atlas of Crystallography. Kluwer, IUC, 1990.Google ScholarGoogle Scholar
  24. J. Malestein and L. Theran. Generic combinatorial rigidity of periodic frameworks. arxiv.1008.1837, 2010.Google ScholarGoogle Scholar
  25. J. C. Maxwell. On the calculation of the equilibrium and stiffness of frames. Philosophical Magazine, 27:294--299, 1864.Google ScholarGoogle ScholarCross RefCross Ref
  26. H. D. Megaw. Crystal structures: a working approach. W.B.Saunders Co., Philadelphia, 1973.Google ScholarGoogle Scholar
  27. M. O'Keeffe, M. Eddaoudi, H. Li, T. Reineke, and O. M. Yaghi. Frameworks for extended solids: geometrical design principles. Journal of Solid State Chemistry, 152:3--20, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  28. J. G. Oxley. Matroid theory. The Clarendon Press, Oxford University Press, New York, 1992.Google ScholarGoogle Scholar
  29. S. C. Power. Crystal frameworks, symmetry and affinely periodic flexes. arXiv:1103.1914, 2011.Google ScholarGoogle Scholar
  30. J. S. Pym and H. Perfect. Submodular functions and independence structures. Journal of Mathematical Analysis and Applications, 30:1--31, 1970.Google ScholarGoogle ScholarCross RefCross Ref
  31. E. Ross. Geometric and combinatorial rigidity of periodic frameworks as graphs on the torus. PhD thesis, York University, Ontario, Canada, Toronto, May 2011.Google ScholarGoogle Scholar
  32. E. Ross, B. Schulze, and W. Whiteley. Finite motions from periodic frameworks with added symmetry. International Journal Solids and Structures, 48:1711--1729, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  33. S. Tanigawa. Generic rigidity matroids with Dilworth truncations. arXiv:1010.5699, 2010.Google ScholarGoogle Scholar
  34. T.-S. Tay. Rigidity of multigraphs I: linking rigid bodies in n-space. Journal of Combinatorial Theory, Series B, 26:95--112, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  35. T.-S. Tay. Linking (n-2)-dimensional panels in n-space II: $(n-2, 2)-frameworks and body and hinge structures. Graphs and Combinatorics, 5:245--273, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  36. T.-S. Tay. Linking (n-2)-dimensional panels in n-space I:(k-1, k)-graphs and (k-1, k)-frames. Graphs and Combinatorics, 7(3):289--304, 1991.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. F. Thorpe, M. V. Chubynsky, B. M. Hespenheide, S. Menor, D. J. Jacobs, L. A. Kuhn, M. I. Zavodszky, M. Lei, A. J. Rader, and W. Whiteley. Flexibility in Biomolecules, chapter 6, pages 97--112. Current Topics in Physics. Imperial College Press, London, 2005. R.A. Barrio and K.K. Kaski, eds.Google ScholarGoogle ScholarCross RefCross Ref
  38. H. Weyl. Symmetry. Princeton University Press, 1952.Google ScholarGoogle Scholar
  39. W. Whiteley. The union of matroids and the rigidity of frameworks. SIAM Journal Discrete Mathematics, 1(2):237--255, May 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Periodic body-and-bar frameworks

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SoCG '12: Proceedings of the twenty-eighth annual symposium on Computational geometry
        June 2012
        436 pages
        ISBN:9781450312998
        DOI:10.1145/2261250

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 17 June 2012

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate625of1,685submissions,37%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader