skip to main content
10.1145/2324796.2324835acmconferencesArticle/Chapter ViewAbstractPublication PagesicmrConference Proceedingsconference-collections
research-article

Contour canonical form: an efficient intrinsic embedding approach to matching non-rigid 3D objects

Published:05 June 2012Publication History

ABSTRACT

Evaluating the intrinsic similarities between non-rigid 3D shapes is of vital importance in content-based shape retrieval. In this paper, we present a novel intrinsic embedding technique, the contour canonical form, to express the isometry-invariant shape representation. The basic idea is to generate an unbent mapping shape for each subpart by aligning the geodesic contours. In details, we first extract the feature points on the non-rigid shape. Then, their canonical mapping positions are calculated, which are globally optimized under geodesic constraints defined on the shape surface. Guided by these positions, an embedding shape is finally obtained by adaptively rotating and translating the geodesic contours around the corresponding feature point. Compared with existing spectral embedding methods, our approach excels on both the preservation of geometric information and the computational efficiency. In the experiment, the contour canonical form is applied in retrieving non-rigid 3D shapes from the McGill articulated benchmark. The appealing results clearly demonstrate a significant performance improvement of our approach over state-of-the-art methods.

References

  1. M. Ben-Chen and C. Gotsman. Characterizing shape using conformal factors. In Eurographics Workshop on 3D Object Retrieval, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. M. Bronstein, M. M. Bronstein, R. Kimmel, M. Mahmoudi, and G. Sapiro. A gromov-hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. International Journal of Computer Vision, 89(2-3):266--286, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. M. Bronstein and I. Kokkinos. Scale-invariant heat kernel signatures for non-rigid shape recognition. In Computer Vision and Pattern Recognition, pages 1704--1711, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  4. D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhyoung. On visual similarity based 3d model retrieval. Computer Graphics Forum, 22(3):223--232, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  5. A. Elad and R. Kimmel. On bending invariant signatures for surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10):1285--1295, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology matching for fully automatic similarity estimation of 3d shapes. In Proceedings of ACM SIGGRAPH, pages 203--212, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. V. Jain and H. Zhang. Shape-based retrieval of articulated 3d models using spectral embeddings. In Proc. IEEE Geometric Modeling and Processing, pages 295--308, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. E. Johnson and M. Hebert. Using spin images for efficient object recognition in clustered 3d scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5):433--449, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant spherical harmonic representation of 3d shape descriptors. In Symposium on Geometry Processing, pages 156--164, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Z. Lian and A. Godil. A feature-preserved canonical form for non-rigid 3d meshes. In The First Joint 3DIM/3DPVT Conference, pages 116--123, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. D. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Compution Vision, 60(2):91--110, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Mahmoudi and G. Sapiro. Three-dimensional point cloud recognition via distributions of geometric distances. Graphical Models, 71(1):22--31, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. N. J. Mitra, L. Guibas, J. Giesen, and M. Pauly. Probabilistic fingerprints for shapes. In Symposium on Geometry Processing, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. R. Ohbuchi, K. Okada, T. Furuya, and T. Banno. Salient local visual features for shape-based 3d model retrieval. In Shape Modeling International, pages 93--102, 2008.Google ScholarGoogle Scholar
  15. R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Shape distributions. ACM Transactions on Graphics, 21(4):807--832, October 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. Reuter, F.-E. Wolter, and N. Peinecke. Laplace-spectra as fingerprints for shape matching. In Proceedings of the 2005 ACM symposium on Solid and physical modeling, pages 101--106, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Reuter, F.-E. Wolter, and N. Peinecke. Laplace-beltrami spectra as "shape-dna" of surfaces and solids. Computer-Aided Design, 38(4):342--366, April 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. K. Sfikas, I. Pratikakis, and T. Theoharis. Contopo: Non-rigid 3d object retrieval using topological information guided by conformal factors. In Eurographics Workshop on 3D Object Retrieval, pages 25--32, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. The princeton shape benchmark. In Shape Modeling International, pages 167--178, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. K. Siddiqi, J. Zhang, D. Macrini, A. Shokoufandeh, S. Bouix, and S. Dickinson. Retrieving articulated 3d models using medial surfaces. Machine Vision and Applications, 19(4):261--274, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Sun, M. Ovsjanikov, and L. Guibas. A concise and provably informative multi-scale signature based on heat diffusion. In Symposium on Geometry Processing, pages 1383--1392, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. H. Tabia, M. Daoudi, J.-P. Vandeborre, and O. Colot. A new 3d-matching method of nonrigid and partially similar models using curve analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(4):852--858, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. W. H. Tangelder and R. C. Veltkamp. A survey of content based 3d shape retrieval methods. Multimedia Tools and Applications, 39(3):441--471, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. Tierny, J.-P. Vandeborre, and M. Daoudi. 3d mesh skeleton extraction using topological and geometrical analyses. In Pacific Graphics, pages 85--94, 2006.Google ScholarGoogle Scholar
  25. J. Tierny, J.-P. Vandeborre, and M. Daoudi. Partial 3d shape retrieval by reeb pattern unfolding. Computer Graphics Forum, 28(1):41--55, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  26. T. Tung and F. Schmitt. The augmented multiresolution reeb graph approach for content-based retrieval of 3d shapes. International Journal of Shape Modeling, 11(1):91--120, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  27. X.-L. Wang, Y. Liu, and H. Zha. Intrinsic spin images: A subspace decomposition approach to understanding 3d deformable shapes. In Proceedings of the Fifth International Symposium 3D Data Processing, Visualization and Transmission, 2010.Google ScholarGoogle Scholar

Index Terms

  1. Contour canonical form: an efficient intrinsic embedding approach to matching non-rigid 3D objects

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            ICMR '12: Proceedings of the 2nd ACM International Conference on Multimedia Retrieval
            June 2012
            489 pages
            ISBN:9781450313292
            DOI:10.1145/2324796

            Copyright © 2012 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 5 June 2012

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            ICMR '12 Paper Acceptance Rate50of145submissions,34%Overall Acceptance Rate254of830submissions,31%

            Upcoming Conference

            ICMR '24
            International Conference on Multimedia Retrieval
            June 10 - 14, 2024
            Phuket , Thailand

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader