skip to main content
10.1145/2331684.2331705acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Implicitization of curves and surfaces using predicted support

Published: 07 June 2012 Publication History

Abstract

We reduce implicitization of rational parametric curves and (hyper)surfaces to linear algebra, by interpolating the coefficients of the implicit equation. For this, we may use any method for predicting the implicit support. We focus on methods that exploit input structure in the sense of sparse (or toric) elimination theory, namely by computing the Newton polytope of the implicit polynomial. We offer a public-domain implementation of our methods, and study their numerical stability and efficiency on several classes of plane curves and surfaces, and discuss how it can be used for approximate implicitization in the setting of sparse elimination.

References

[1]
M. Aigner, A. Poteaux, B. Juttler. Approximate implicitization of space curves. Symbolic & Numer. Comp, Springer, 2011. To appear
[2]
R. Corless, M. Giesbrecht, I. S. Kotsireas, and S. Watt. Numerical implicitization of parametric hypersurfaces with linear algebra. In Proc. AISC, pp. 174--183, 2000.
[3]
D. A. Cox, J. B. Little, and D. O'Shea. Using Algebraic Geometry, vol. 185 of GTM. Springer, 1998.
[4]
M. Cueto, E. Tobis, and J. Yu. An implicitization challenge for binary factor analysis. J. Symbolic Computation, 45(12):1296--1315, 2010.
[5]
M. A. Cueto. Tropical Implicitization. PhD thesis, Dept Mathematics, UC Berkeley, 2010.
[6]
C. D'Andrea and M. Sombra. The Newton polygon of a rational plane curve. Math. in Computer Science, 4(1):3--24, 2010.
[7]
A. Dickenstein, E. M. Feichtner, and B. Sturmfels. Tropical discriminants. J. AMS, 1111--1133, 2007.
[8]
T. Dokken and J. B. Thomassen. Overview of approximate implicitization. Topics in algebraic geometry and geometric modeling, 334:169--184, 2003.
[9]
I. Z. Emiris, V. Fisikopoulos, and C. Konaxis. Regular triangularions and resultant polytopes. In Proc. Europ. Workshop Comp. Geometry, pp. 137--140, 2010.
[10]
I. Z. Emiris, C. Konaxis, and L. Palios. Computing the Newton polygon of the implicit equation. Tech. Report 0811.0103v1, arXiv, 2007.
[11]
I. Z. Emiris, C. Konaxis, and L. Palios. Computing the Newton polygon of the implicit equation. Math. in Computer Science, Special Issue, 4(1):25--44, 2010.
[12]
I. Z. Emiris and I. S. Kotsireas. Implicit polynomial support optimized for sparseness. In Proc. Conf. Comput. science Appl., pp. 397--406, Springer, 2003
[13]
A. Esterov and A. Khovanski. Elimination theory and Newton polytopes. ArXiv Math., Nov. 2006.
[14]
L. Gonzalez-Vega. Implicitization of parametric curves and surfaces by using multidimensional Newton formulae. J. Symbolic Comput., 23(2-3):137--151, 1997.
[15]
R. Krasauskas. Personal communication, 2011.
[16]
I. S. Kotsireas and E. Lau. Implicitization of polynomial curves. In Proc. ASCM, pp. 217--226, Beijing, 2003.
[17]
A. Marco and J. Martinez. Implicitization of rational surfaces by means of polynomial interpolation. CAGD, 19:327--344, 2002.
[18]
J. Rambau. TOPCOM: Triangulations of point configurations and oriented matroids. Intern. Conf. Math. Software, pp. 330--340. World Scientific, 2002.
[19]
M. Shalaby and B. Jüttler. Approximate implicitization of space curves and of surfaces of revolution. Algebraic Geometry & Geom. Modeling, pp. 215--228. Springer, 2008.
[20]
B. Sturmfels. On the Newton polytope of the resultant. J. Algebraic Combin., 3:207--236, 1994.
[21]
B. Sturmfels, J. Tevelev, and J. Yu. The Newton polytope of the implicit equation. Moscow Math. J., 7(2), 2007.
[22]
B. Sturmfels and J. Yu. Tropical implicitization and mixed fiber polytopes. In Soft. for Algebraic Geom, vol. 148 of IMA pp. 111--131, Springer, 2008.
[23]
B. Sturmfels and J. T. Yu. Minimal polynomials and sparse resultants. In Proc. Zero-dimensional schemes (Ravello, 1992), pp. 317--324. De Gruyter, 1994.
[24]
E. Wurm, J. Thomassen, B. Juttler, T. Dokken. Comparative benchmarking of methods for approximate implicitization. In Geom. Modeling & computing 2003, pp. 537--548. 2004
[25]
R. Zippel. Effective Polynomial Computation. Kluwer Academic Publishers, Boston, 1993.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SNC '11: Proceedings of the 2011 International Workshop on Symbolic-Numeric Computation
June 2012
194 pages
ISBN:9781450305150
DOI:10.1145/2331684
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 June 2012

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Newton polytope
  2. implicitization
  3. numerical linear algebra
  4. sparse elimination

Qualifiers

  • Research-article

Funding Sources

Conference

ISSAC '11
Sponsor:

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)1
Reflects downloads up to 01 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2013)Implicitization of curves and (hyper)surfaces using predicted supportTheoretical Computer Science10.1016/j.tcs.2012.10.018479(81-98)Online publication date: 1-Apr-2013
  • (2013)Linear sparse differential resultant formulasLinear Algebra and its Applications10.1016/j.laa.2013.01.016438:11(4296-4321)Online publication date: Jun-2013
  • (2013)Sparse implicitization by interpolationComputer-Aided Design10.1016/j.cad.2012.10.00845:2(252-261)Online publication date: 1-Feb-2013
  • (2012)An output-sensitive algorithm for computing projections of resultant polytopesProceedings of the twenty-eighth annual symposium on Computational geometry10.1145/2261250.2261276(179-188)Online publication date: 17-Jun-2012

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media