skip to main content
10.1145/2343483.2343494acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Computational plenoptic imaging

Published:05 August 2012Publication History

ABSTRACT

A new generation of computational cameras is emerging, spawned by the introduction of the Lytro light-field camera to the consumer market and recent accomplishments in the speed at which light can be captured. By exploiting the co-design of camera optics and computational processing, these cameras capture unprecedented details of the plenoptic function: a ray-based model for light that includes the color spectrum as well as spatial, temporal, and directional variation. Although digital light sensors have greatly evolved in the last years, the visual information captured by conventional cameras has remained almost unchanged since the invention of the daguerreotype. All standard CCD and CMOS sensors integrate over the dimensions of the plenoptic function as they convert photons into electrons. In the process, all visual information is irreversibly lost, except for a two-dimensional, spatially varying subset: the common photograph.

This course reviews the plenoptic function and discusses approaches for optically encoding high-dimensional visual information that is then recovered computationally in post-processing. It begins with an overview of the plenoptic dimensions and shows how much of this visual information is irreversibly lost in conventional image acquisition. Then it discusses the state of the art in joint optical modulation and computation reconstruction for acquisition of high-dynamic-range imagery and spectral information. It unveils the secrets behind imaging techniques that have recently been featured in the news and outlines other aspects of light that are of interest for various applications before concluding with question, answers, and a short discussion.

Skip Supplemental Material Section

Supplemental Material

crs109_1_12.mp4

mp4

6.7 MB

crs109_4_12.mp4

mp4

33.1 MB

References

  1. Adams, A., Talvala, E.-V., Park, S. H., Jacobs, D. E., Ajdin, B., Gelfand, N., Dolson, J., Vaquero, D., Baek, J., Tico, M., Lensch, H. P. A., Matusik, W., Pulli, K., Horowitz, M., and Levoy, M. 2010. The Frankencamera: an Experimental Platform for Computational Photography. ACM Trans. Graph. (SIGGRAPH) 29, 29:1--29:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Adelson, E. H., and Bergen, J. R. 1991. The Plenoptic Function and the Elements of Early Vision. In Computational Models of Visual Processing, MIT Press, 3--20.Google ScholarGoogle Scholar
  3. Adelson, E., and Wang, J. 1992. Single Lens Stereo with a Plenoptic Camera. IEEE Trans. PAMI 14, 2, 99--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Aggarwal, M., and Ahuja, N. 2004. Split Aperture Imaging for High Dynamic Range. Int. J. Comp. Vis. 58, 1, 7--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Agrawal, A., and Raskar, R. 2007. Resolving Objects at Higher Resolution from a Single Motion-Blurred Image. In Proc. IEEE CVPR, 1--8.Google ScholarGoogle Scholar
  6. Agrawal, A., and Raskar, R. 2009. Optimal Single Image Capture for Motion Deblurring. In Proc. IEEE CVPR, 1--8.Google ScholarGoogle Scholar
  7. Agrawal, A., and Xu, Y. 2009. Coded Exposure Deblurring: Optimized Codes for PSF Estimation and Invertibility. In Proc. IEEE CVPR, 1--8.Google ScholarGoogle Scholar
  8. Agrawal, A., Xu, Y., and Raskar, R. 2009. Invertible Motion Blur in Video. ACM Trans. Graph. (Siggraph) 28, 3, 95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Agrawal, A., Gupta, M., Veeraraghavan, A., and Narasimhan, S. 2010. Optimal Coded Sampling for Temporal Super-Resolution. In Proc. IEEE CVPR, 374--380.Google ScholarGoogle Scholar
  10. Agrawal, A., Veeraraghavan, A., and Raskar, R. 2010. Reinterpretable Imager: Towards Variable Post-Capture Space, Angle and Time Resolution in Photography. In Proc. Eurographics, 1--10.Google ScholarGoogle Scholar
  11. Allen, T., 2010. Time Lapse Tutorial. http://timothyallen.blogs.bbcearth.com/2009/02/24/time-lapse-photography/.Google ScholarGoogle Scholar
  12. Alleyson, D., Süsstrunk, S., and Hérault, J. 2005. Linear Demosaicing inspired by the Human Visual System. IEEE Trans. Im. Proc. 14, 4, 439--449. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Ashdown, I. 1993. Near-field photometry: A new approach. Journal of the Illuminating Engineering Society 22, 1, 163--180.Google ScholarGoogle ScholarCross RefCross Ref
  14. Ashok, A., and Neifeld, M. A. 2007. Pseudorandom Phase Masks for Superresolution Imaging from Subpixel Shifting. Applied Optics 46, 12, 2256--2268.Google ScholarGoogle ScholarCross RefCross Ref
  15. Ashok, A., and Neifeld, M. A. 2010. Compressive Light Field Imaging. In Proc. SPIE 7690, 76900Q.Google ScholarGoogle Scholar
  16. Atcheson, B., Ihrke, I., Heidrich, W., Tevs, A., Bradley, D., Magnor, M., and Seidel, H. 2008. Time-resolved 3D Capture of Non-Stationary Gas Flows. ACM Trans. Graph. (SIGGRAPH Asia) 27, 5, 132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Atkinson, G., and Hancock, E. 2005. Multi-view surface reconstruction using polarization. In Proc. ICCV, vol. 1, 309--316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Atkinson, G. A., and Hancock, E. R. 2008. Two-dimensional BRDF Estimation from Polarisation. Comput. Vis. Image Underst. 111, 2, 126--141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Babacan, S. D., Ansorge, R., Luessi, M., Molina, R., and Katsaggelos, A. K. 2009. Compressive Sensing of Light Fields. In Proc. ICIP, 2313--2316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Baek, J. 2010. Transfer Efficiency and Depth Invariance in Computational Cameras. In Proc. ICCP, 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  21. Baker, S., and Kanade, T. 2002. Limits on Super-Resolution and How to Break Them. IEEE Trans. PAMI 24, 1167--1183. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Baker, S., Robinson, J. S., Haworth, C. A., Teng, H., Smith, R. A., Chirila, C. C., Lein, M., Tisch, J. W. G., and Marangos, J. P. 2006. Probing Proton Dynamics in Molecules on an Attosecond Time Scale. Science 312, 5772, 424--427.Google ScholarGoogle Scholar
  23. Barone-Nugent, E. D., Barty, A., and Nugent, K. A. 2002. Quantitative Phase-Amplitude Microscopy I: Optical Microscopy. Journal of Microscopy 206, 3, 194--203.Google ScholarGoogle ScholarCross RefCross Ref
  24. Bascle, B., Blake, A., and Zisserman, A. 1996. Motion Deblurring and Super-resolution from an Image Sequence. In Proc. ECCV, 573--582. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Bayer, B. E., 1976. Color imaging array. US Patent 3,971,065.Google ScholarGoogle Scholar
  26. Ben-Eliezer, E., Marom, E., Konforti, N., and Zalevsky, Z. 2005. Experimental Realization of an Imaging System with an Extended Depth of Field. Appl. Opt. 44, 11, 2792--2798.Google ScholarGoogle ScholarCross RefCross Ref
  27. Ben-Ezra, M., and Nayar, S. 2003. Motion Deblurring using Hybrid Imaging. In Proc. IEEE CVPR, 657--664. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Ben-Ezra, M., and Nayar, S. 2004. Motion-based Motion Deblurring. IEEE Trans. PAMI 26, 6, 689--698. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Ben-Ezra, M., Zomet, A., and Nayar, S. 2005. Video Superresolution using Controlled Subpixel Detector Shifts. IEEE Trans. PAMI 27, 6, 977--987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Ben-Ezra, M. 2010. High Resolution Large Format Tile-Scan Camera. In Proc. IEEE ICCP, 1--8.Google ScholarGoogle Scholar
  31. Ben-Ezra, M. 2011. A Digital Gigapixel Large-Format Tile-Scan Camera. IEEE Computer Graphics and Applications 31, 49--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Bishop, T., Zanetti, S., and Favaro, P. 2009. Light-Field Superresolution. In Proc. ICCP, 1--9.Google ScholarGoogle Scholar
  33. Bodkin, A., Sheinis, A., Norton, A., Daly, J., Beaven, S., and Weinheimer, J. 2009. Snapshot Hyperspectral Imaging - the Hyperspectral Array Camera. In Proc. SPIE 7334, 1--11.Google ScholarGoogle Scholar
  34. Bolles, R. C., Baker, H. H., and Marimont, D. H. 1987. Epipolar-plane image analysis: An approach to determining structure from motion. IJCV 1, 1, 7--55.Google ScholarGoogle ScholarCross RefCross Ref
  35. Borman, S., and Stevenson, R. 1998. Super-resolution from image sequences - A review. In Proc. Symposium on Circuits and Systems, 374--378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Bradley, D., Atcheson, B., Ihrke, I., and Heidrich, W. 2009. Synchronization and Rolling Shutter Compensation for Consumer Video Camera Arrays. In Proc. ProCams, 1--8.Google ScholarGoogle Scholar
  37. Brady, D. J., and Hagen, N. 2009. Multiscale Lens Design. Optics Express 17, 13, 10659--10674.Google ScholarGoogle ScholarCross RefCross Ref
  38. Braun, M. 1992. Picturing Time: The Work of Etienne-Jules Marey (1830-1904). The University of Chicago Press.Google ScholarGoogle Scholar
  39. Bub, G., Tecza, M., Helmes, M., Lee, P., and Kohl, P. 2010. Temporal Pixel Multiplexing for Simultaneous High-Speed, High-Resolution Imaging. Nature Methods 7, 209--211.Google ScholarGoogle ScholarCross RefCross Ref
  40. Campillo, A., and Shapiro, S. 1983. Picosecond Streak Camera Fluorometry-A Review. Journal of Quantum Electronics 19, 4, 585--603.Google ScholarGoogle ScholarCross RefCross Ref
  41. Candès, E., Romberg, J., and Tao, T. 2006. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Information Theory 52, 2, 489--509. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Cao, X., Tong, X., Dai, Q., and Lin, S. 2011. High Resolution Multispectral Video Capture with a Hybrid Camera System. In Proc. IEEE CVPR, 1--8.Google ScholarGoogle Scholar
  43. Carranza, J., Theobalt, C., Magnor, M. A., and Seidel, H.-P. 2003. Free-viewpoint video of human actors. ACM Transactions on Graphics (TOG) 22, 3, 569--577. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Chen, S. E., and Williams, L. 1993. View interpolation for image synthesis. In Proc. ACM SIGGRAPH, 279--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Chen, H., and Wolff, L. B. 1998. Polarization Phase-Based Method For Material Classification In Computer Vision. IJCV 28, 1, 73--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Chi, W., and George, N. 2001. Electronic Imaging using a Logarithmic Asphere. Optics Letters 26, 12, 875--877.Google ScholarGoogle ScholarCross RefCross Ref
  47. Chi, W., Chu, K., and George, N. 2006. Polarization Coded Aperture. Optics Express 14, 15, 6634--6642.Google ScholarGoogle ScholarCross RefCross Ref
  48. Collett, E. 2005. Field Guide to Polarization. SPIE Press.Google ScholarGoogle Scholar
  49. Cossairt, O., and Nayar, S. K. 2010. Spectral Focal Sweep: Extended Depth of Field from Chromatic Aberrations. In Proc. ICCP, 1--8.Google ScholarGoogle Scholar
  50. Cossairt, O., Zhou, C., and Nayar, S. K. 2010. Diffusion Coded Photography for Extended Depth of Field. ACM Trans. Graph. (Siggraph) 29, 3, 31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Cossairt, O., Miau, D., and Nayar, S. K. 2011. Gigapixel Computational Imaging. In Proc. ICCP.Google ScholarGoogle Scholar
  52. cri inc, 2009. VariSpec Liquid Crystal Tunable Filters. www.channelsystems.ca/Attachments/VariSpec/VariSpec-Brochure.pdf.Google ScholarGoogle Scholar
  53. Cula, O. G., Dana, K. J., Pai, D. K., and Wang, D. 2007. Polarization Multiplexing and Demultiplexing for Appearance-Based Modeling. IEEE Trans. Pattern Anal. Mach. Intell. 29, 2, 362--367. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Debevec, P. E., and Malik, J. 1997. Recovering High Dynamic Range Radiance Maps from Photographs. In Proc. ACM Siggraph, 369--378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and Sagar, M. 2000. Acquiring the Reflectance Field of a Human Face. In Proc. ACM SIGGRAPH, 145--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Debevec, P. 2002. Image-Based Lighting. IEEE Computer Graphics and Applications, 26--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Descour, M., and Dereniak, E. 1995. Computed-tomography Imaging Spectrometer: Experimental Calibration and Reconstruction Results. Applied Optics 34, 22, 4817--4826.Google ScholarGoogle ScholarCross RefCross Ref
  58. Descour, M. E., C. E. Volin, Dereniak, E., and K. J. Thome. 1997. Demonstration of a High-Speed Nonscanning Imaging Spectrometer. Optics Letters 22, 16, 1271--1273.Google ScholarGoogle ScholarCross RefCross Ref
  59. Dowski, E., and Cathey, T. 1995. Extended Depth of Field through Wave-Front Coding. Applied Optics 34, 11, 1859--1866.Google ScholarGoogle ScholarCross RefCross Ref
  60. Du, H., Tong, X., Cao, X., and Lin, S. 2009. A Prism-Based System for Multispectral Video Acquisition. In Proc. IEEE ICCV, 175--182.Google ScholarGoogle Scholar
  61. Eastman Kodak Company. PhotoCD PCD0992. http://r0k.us/graphics/kodak.Google ScholarGoogle Scholar
  62. Fairchild, M. D. 2005. Color Appearance Models. John Wiley and Sons.Google ScholarGoogle Scholar
  63. Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T., and Freeman, W. T. 2006. Removing Camera Shake from a Single Photograph. ACM Trans. Graph. 25, 787--794. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Fergus, R., Torralba, A., and Freeman, W. T. 2006. Random Lens Imaging. Tech. Rep. MIT-CSAIL-TR-2006-058, National Bureau of Standards.Google ScholarGoogle Scholar
  65. Fletcher-Holmes, D. W., and Harvey, A. R. 2005. Real-Time Imaging with a Hyperspectral Fovea. J. Opt. A: Pure Appl. Opt. 7, S298--S302.Google ScholarGoogle ScholarCross RefCross Ref
  66. Foveon, 2010. X3 Technology. www.foveon.com.Google ScholarGoogle Scholar
  67. Gabor, D. 1948. A new microscopic principle. Nature, 777--778.Google ScholarGoogle Scholar
  68. Gaigalas, A. K., Wang, L., He, H.-J., and DeRose, P. 2009. Procedures for Wavelength Calibration and Spectral Response Correction of CCD Array Spectrometers. Journal of Research of the National Institute of Standards and Technology 114, 4, 215--228.Google ScholarGoogle ScholarCross RefCross Ref
  69. Gao, L., Kester, R. T., and Tkaczyk, T. S. 2009. Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy. Optics Express 17, 15, 12293--12308.Google ScholarGoogle ScholarCross RefCross Ref
  70. Garcia-Guerrero, E. E., Mendez, E. R., and Leskova, H. M. 2007. Design and Fabrication of Random Phase Diffusers for Extending the Depth of Focus. Optics Express 15, 3, 910--923.Google ScholarGoogle ScholarCross RefCross Ref
  71. Gat, N. 2000. Imaging Spectroscopy Using Tunable Filters: A Review. In Proc. SPIE 4056, 50--64.Google ScholarGoogle Scholar
  72. Gehm, M. E., John, R., Brady, D. J., Willett, R. M., and Schulz, T. J. 2007. Single-Shot Compressive Spectral Imaging with a Dual-Disperser Architecture. Optics Express 15, 21, 14013--14027.Google ScholarGoogle ScholarCross RefCross Ref
  73. Georgiev, T., Zheng, C., Nayar, S., Curless, B., Salesin, D., and Intwala, C. 2006. Spatio-angular resolution trade-offs in integral photography. In Proc. EGSR, 263--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Georgiev, T., Intwala, C., Babacan, S., and Lumsdaine, A. 2008. Unified Frequency Domain Analysis of Lightfield Cameras. In Proc. ECCV, 224--237. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Gershun, A. 1936. The light field. Journal of Mathematics and Physics XVIII, 51--151. Translated by P. Moon and G. Timoshenko.Google ScholarGoogle Scholar
  76. Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. 2010. Circularly polarized spherical illumination reflectometry. ACM Trans. Graph. (Siggraph Asia) 27, 5, 134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Goda, K., Tsia, K. K., and Jalali, B. 2009. Serial Time-Encoded Amplified Imaging for Real-Time Observation of Fast Dynamic Phenomena. Nature, 458, 1145--1149.Google ScholarGoogle ScholarCross RefCross Ref
  78. Gorman, A., Fletcher-Holmes, D. W., and Harvey, A. R. 2010. Generalization of the Lyot Filter and its Application to Snapshot Spectral Imaging. Optics Express 18, 6, 5602--5608.Google ScholarGoogle ScholarCross RefCross Ref
  79. Gortler, S., Grzeszczuk, R., Szelinski, R., and Cohen, M. 1996. The Lumigraph. In Proc. ACM Siggraph, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Gottesman, S. R., and Fenimore, E. E. 1989. New family of binary arrays for coded aperture imaging. Applied Optics 28, 20, 4344--4352.Google ScholarGoogle ScholarCross RefCross Ref
  81. Green, P., Sun, W., Matusik, W., and Durand, F. 2007. Multi-Aperture Photography. In Proc. ACM Siggraph, 68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Grossberg, M. D., and Nayar, S. K. 2003. High Dynamic Range from Multiple Images: Which Exposures to Combine. In Proc. ICCV Workshop CPMCV.Google ScholarGoogle Scholar
  83. Grosse, M., Wetzstein, G., Grundhöfer, A., and Bimber, O. 2010. Coded Aperture Projection. ACM Trans. Graph. 29, 22:1--22:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Gu, J., Hitomi, Y., Mitsunaga, T., and Nayar, S. K. 2010. Coded Rolling Shutter Photography: Flexible Space-Time Sampling. In Proc. IEEE ICCP, 1--8.Google ScholarGoogle Scholar
  85. Gunturk, B., Glotzbach, J., Altunbasak, Y., Schafer, R., and Mersereau, R. 2005. Demosaicking: Color Filter Array Interpolation in Single-Chip Digital Cameras. IEEE Signal Processing 22, 1, 44--54.Google ScholarGoogle ScholarCross RefCross Ref
  86. Gupta, M., Agrawal, A., Veeraraghavan, A., and Narasimhan, S. G. 2010. Flexible Voxels for Motion-Aware Videography. In Proc. ECCV, 100--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Halle, M. W. 1994. Holographic stereograms as discrete imaging systems. In SPIE Practical Holography, 73--84.Google ScholarGoogle Scholar
  88. Hamamatsu, 2010. Streak Systems. http://sales.hamamatsu.com/en/products/system-division/ultra-fast/streak-systems.php.Google ScholarGoogle Scholar
  89. Hanrahan, P., and Ng, R. 2006. Digital Correction of Lens Aberrations in Light Field Photography. In International Optical Design Conference, 1--3.Google ScholarGoogle Scholar
  90. Harvey, A. R., Beale, J., Greenaway, A. H., Hanlon, T. J., and Williams, J. 2000. Technology Options for Imaging Spectrometry Imaging Spectrometry. In Proc. SPIE 4132, 13--24.Google ScholarGoogle Scholar
  91. Harvey, A. R., Fletcher-Holmes, D. W., and Gorman, A. 2005. Spectral Imaging in a Snapshot. In Proc. SPIE 5694, 1--10.Google ScholarGoogle Scholar
  92. Hasinoff, S. W., and Kutulakos, K. N. 2006. Confocal Stereo. In Proc. ECCV, 620--634. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Hasinoff, S. W., and Kutulakos, K. N. 2008. Light-Efficient Photography. In Proc. of ECCV, 45--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Hasinoff, S. W., and Kutulakos, K. N. 2009. Confocal Stereo. Int. J. Comp. Vis. 81, 1, 82--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Hasinoff, S. W., Kutulakos, K. N., Durand, F., and Freeman, W. T. 2009. Time-Constrained Photography. In Proc. of ICCV, 333--340.Google ScholarGoogle Scholar
  96. Hasinoff, S. W., Durand, F., and Freeman, W. T. 2010. Noise-Optimal Capture for High Dynamic Range Photography. In Proc. IEEE CVPR, 1--8.Google ScholarGoogle Scholar
  97. Häusler, G. 1972. A Method to Increase the Depth of Focus by Two Step Image Processing. Optics Communications 6, 1, 38--42.Google ScholarGoogle ScholarCross RefCross Ref
  98. Hecht, E. 2002. Optics, fourth edition. Addison Wesley.Google ScholarGoogle Scholar
  99. Hirakawa, K., and Parks, T. W. 2006. Joint Demosaicing and Denoising. IEEE Trans. Im. Proc. 15, 8, 2146--2157. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. Hirakawa, K., and Wolfe, P. 2007. Spatio-Spectral Color Filter Array Design for Enhanced Image Fidelity. In Proc. ICIP, II -- 81--II -- 84.Google ScholarGoogle Scholar
  101. Hirakawa, K., and Wolfe, P. 2008. Spatio-Spectral Color Filter Array Design for Optimal Image Recovery. IEEE Trans. Im. Proc. 17, 10, 1876--1890. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. Hirsch, M., Lanman, D., Holtzman, H., and Raskar, R. 2009. BiDi Screen: a Thin, Depth-Sensing LCD for 3D Interaction using Light Fields. In ACM Trans. Graph. (SIGGRAPH Asia), 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Hiura, S., Mohan, A., and Raskar, R. 2009. Krill-eye: Superposition Compound Eye for Wide-Angle Imaging via GRIN Lenses. In Proc. OMNIVIS, 1--8.Google ScholarGoogle Scholar
  104. Horstmeyer, R., Euliss, G., Athale, R., and Levoy, M. 2009. Flexible Multimodal Camera Using a Light Field Architecture. In Proc. ICCP, 1--8.Google ScholarGoogle Scholar
  105. Hunicz, J., and Piernikarski, D. 2001. Investigation of Combustion in a Gasoline Engine using Spectrophotometric Methods. In Proc. SPIE 4516, 307--314.Google ScholarGoogle Scholar
  106. Hunt, R. W. G. 1991. Measuring Color, 3rd ed. Fountain Press.Google ScholarGoogle Scholar
  107. Ihrke, I., Stich, T., Gottschlich, H., Magnor, M., and Seidel, H. 2008. Fast incident light field acquisition and rendering. In Proc. of WSCG, 177--184.Google ScholarGoogle Scholar
  108. Ihrke, I., Wetzstein, G., and Heidrich, W. 2010. A Theory of Plenoptic Multiplexing. In Proc. IEEE CVPR, 1--8.Google ScholarGoogle Scholar
  109. Ihrke, I., Kutulakos, K. N., Lensch, H. P. A., Magnor, M., and Heidrich, W. 2010. Transparent and Specular Object Reconstruction. Computer Graphics Forum 29, 8, 2400--2426.Google ScholarGoogle ScholarCross RefCross Ref
  110. Inderhees, J., 1973. Optical field curvature corrector. US patent 3,720,454.Google ScholarGoogle Scholar
  111. Itatani, J., Qur, F., Yudin, G. L., Ivanov, M. Y., Krausz, F., and Corkum, P. B. 2002. Attosecond Streak Camera. Physical Review Letters 88, 17, 173903.Google ScholarGoogle ScholarCross RefCross Ref
  112. Ives, H., 1903. Parallax Stereogram and Process of Making Same. US patent 725,567.Google ScholarGoogle Scholar
  113. Ives, H. 1928. Camera for Making Parallax Panoramagrams. J. Opt. Soc. Amer. 17, 435--439.Google ScholarGoogle ScholarCross RefCross Ref
  114. Kang, S. B., Uyttendaele, M., Winder, S., and Szeliski, R. 2003. High Dynamic Range Video. In Proc. ACM Siggraph, 319--325. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. Kanolt, C. W., 1918. Parallax Panoramagrams. US patent 1,260,682.Google ScholarGoogle Scholar
  116. Kapany, N. S., and Hopkins, R. E. 1957. Fiber Optics. Part III. Field Flatteners. JOSA 47, 7, 594--595.Google ScholarGoogle Scholar
  117. Kindzelskii, A. L., Yang, Z. Y., Nabel, G. J., Todd, R. F., and Petty, H. R. 2000. Ebola Virus Secretory Glycoprotein (sGP) Diminishes Fc Gamma RIIIB-to-CR3 Proximity on Neutrophils. J. Immunol. 164, 953--958.Google ScholarGoogle ScholarCross RefCross Ref
  118. Kirmani, A., Hutchison, T., Davis, J., and Raskar, R. 2009. Looking Around the corner using Transient Imaging. In Proc. ICCV, 1--8.Google ScholarGoogle Scholar
  119. Kolb, A., Barth, E., Koch, R., and Larsen, R. 2010. Time-of-Flight Cameras in Computer Graphics. Computer Graphics Forum 29, 1, 141--159.Google ScholarGoogle ScholarCross RefCross Ref
  120. Kopf, J., Uyttendaele, M., Deussen, O., and Cohen, M. F. 2007. Capturing and Viewing Gigapixel Images. ACM Trans. on Graph. (SIGGRAPH) 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. Kutulakos, K. N., and Hasinoff, S. W. 2009. Focal Stack Photography: High-Performance Photography with a Conventional Camera. In Proc. IAPR Conference on Machine Vision Applications, 332--337.Google ScholarGoogle Scholar
  122. Landolt, O., Mitros, A., and Koch, C. 2001. Visual Sensor with Resolution Enhancement by Mechanical Vibrations. In Proc. Advanced Research in VLSI, 249--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. Lange, R., and Seitz, P. 2001. Solid-State Time-of-Flight Range Camera. Journal of Quantum Electronics 37, 3, 390--397.Google ScholarGoogle ScholarCross RefCross Ref
  124. Lanman, D., Wachs, M., Taubin, G., and Cukierman, F. 2006. Spherical Catadioptric Arrays: Construction, Multi-View Geometry, and Calibration. In Proc. 3DPVT, 81--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. Lanman, D., Raskar, R., Agrawal, A., and Taubin, G. 2008. Shield Fields: Modeling and Capturing 3D Occluders. ACM Trans. Graph. (Siggraph Asia) 27, 5, 131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-Adaptive Parallax Barriers: Optimizing Dual-Layer 3D Displays using Low-Rank Light Field Factorization. ACM Trans. Graph. (Siggraph Asia) 28, 5, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. Lanman, D. 2010. Mask-based Light Field Capture and Display. PhD thesis, Brown University, School of Engineering. Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. Lau, D. L., and Yang, R. 2005. Real-Time Multispectral Color Video Synthesis using an Array of Commodity Cameras. Real-Time Imaging 11, 2, 109--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. Lawlor, J., Fletcher-Holmes, D. W., Harvey, A. R., and McNaught, A. I. 2002. In Vivo Hyperspectral Imaging of Human Retina and Optic Disc. Invest. Ophthalmol. Vis. Sci. 43, 4350.Google ScholarGoogle Scholar
  130. Levin, A., and Durand, F. 2010. Linear View Synthesis Using a Dimensionality Gap Light Field Prior. In Proc. IEEE CVPR, 1--8.Google ScholarGoogle Scholar
  131. Levin, A., Fergus, R., Durand, F., and Freeman, W. 2007. Image and Depth from a Conventional Camera with a Coded Aperture. ACM Trans. Graph. (Siggraph) 26, 3, 70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  132. Levin, A., Fergus, R., Durand, F., and Freeman, W. T., 2007. Deconvolution using Natural Image Priors. groups.csail.mit.edu/graphics/CodedAperture/SparseDeconv-LevinEtA107.pdf.Google ScholarGoogle Scholar
  133. Levin, A., Sand, P., Cho, T. S., Durand, F., and Freeman, W. T. 2008. Motion-invariant photography. ACM Trans. Graph. (Siggraph) 27, 3, 71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. Levin, A., Hasinoff, S. W., Green, P., Durand, F., and Freeman, W. T. 2009. 4D Frequency Analysis of Computational Cameras for Depth of Field Extension. ACM Trans. Graph. (Siggraph) 28, 3, 97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. Levoy, M., and Hanrahan, P. 1996. Light Field Rendering. In Proc. ACM Siggraph, 31--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. Levoy, M., Chen, B., Vaish, V., Horowitz, M., McDowall, I., and Bolas, M. 2004. Synthetic Aperture Confocal Imaging. ACM Trans. Graph. (SIGGRAPH) 23, 3, 825--834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  137. Levoy, M., Ng, R., Adams, A., Footer, M., and Horowitz, M. 2006. Light Field Microscopy. ACM Trans. Graph. (Siggraph) 25, 3, 924--934. Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. Levoy, M., 2010. Computational Photography and the Stanford Frankencamera. Technical Talk. www.graphics.stanford.edu/talks/.Google ScholarGoogle Scholar
  139. Li, F., Yu, J., and Chai, J. 2008. A Hybrid Camera for Motion Deblurring and Depth Map Super-Resolution. In Proc. IEEE CVPR, 1--8.Google ScholarGoogle Scholar
  140. Li, X., Gunturk, B., and Zhang, L. 2008. Image Demosaicing: a Systematic Survey. In SPIE Conf. on Visual Comm. and Image Proc., 68221J--68221J--15.Google ScholarGoogle Scholar
  141. Liang, C.-K., Lin, T.-H., Wong, B.-Y., Liu, C., and Chen, H. H. 2008. Programmable Aperture Photography: Multiplexed Light Field Acquisition. ACM Trans. Graph. (Siggraph) 27, 3, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  142. Lippmann, G. 1908. La Photographie Intégrale. Academie des Sciences 146, 446--451.Google ScholarGoogle Scholar
  143. Liu, C., and Sun, D. 2011. A Bayesian Approach to Adaptive Video Super Resolution. In Proc. IEEE CVPR, 1--8.Google ScholarGoogle Scholar
  144. Lu, Y. M., and Vetterli, M. 2009. Optimal Color Filter Array Design: Quantitative Conditions and an Efficient Search Procedure. In Proc. SPIE 7250, 1--8.Google ScholarGoogle Scholar
  145. Lucy, L. B. 1974. An iterative technique for the rectification of observed distributions. The Astronomical Journal 79, 745--754.Google ScholarGoogle ScholarCross RefCross Ref
  146. Lumsdaine, A., and Georgiev, T. 2009. The Focused Plenoptic Camera. In Proc. ICCP, 1--8.Google ScholarGoogle Scholar
  147. Lyot, B. 1944. Le Filtre Monochromatique Polarisant et ses Applications en Physique Solaire. Annales d'Astrophysique 7, 31.Google ScholarGoogle Scholar
  148. Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss, M., and Debevec, P. 2007. Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In Proc. EGSR, 183--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  149. Mann, S., and Picard, R. W. 1995. Being 'Undigital' with Digital Cameras: Extending Dynamic Range by Combining Differently Exposed Pictures. In Proc. IS&T, 442--448.Google ScholarGoogle Scholar
  150. Mansfield, C. L., 2005. Seeing into the past.' www.nasa.gov/vision/earth/technologies/scrolls.html.Google ScholarGoogle Scholar
  151. Mantiuk, R., Daly, S., Myszkowski, K., and Seidel, H.-P. 2005. Predicting Visible Differences in High Dynamic Range Images - Model and its Calibration. In Electronic Imaging, B. E. Rogowitz, T. N. Pappas, and S. J. Daly, Eds., vol. 5666, 204--214.Google ScholarGoogle Scholar
  152. Mantiuk, R., Kim, K. J., Rempel, A., and Heidrich, W. 2011. HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graph. (Siggraph) 30, 3, 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  153. Marshall, J., and Oberwinkler, J. 1999. Ultraviolet Vision: the Colourful World of the Mantis Shrimp. Nature 401, 6756, 873--874.Google ScholarGoogle Scholar
  154. Mathews, S. A. 2008. Design and Fabrication of a low-cost, Multispectral Imaging System. Applied Optics 47, 28, 71--76.Google ScholarGoogle Scholar
  155. Mäthger, L. M., Shashar, N., and Hanlon, R. T. 2009. Do Cephalopods Communicate using Polarized Light Reflections from their Skin? Journal of Experimental Biology 212, 2133--2140.Google ScholarGoogle ScholarCross RefCross Ref
  156. Matusik, W., and Pfister, H. 2004. 3d tv: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. ACM Transactions on Graphics 23, 814--824. Google ScholarGoogle ScholarDigital LibraryDigital Library
  157. Matusik, W., Buehler, C., Raskar, R., Gortler, S. J., and McMillan, L. 2000. Image-based visual hulls. In ACM SIGGRAPH, 369--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  158. Maxwell, J. C. 1860. On the Theory of Compound Colours, and the Relations of the Colours of the Spectrum. Phil. Trans. R. Soc. Lond. 150, 57--84.Google ScholarGoogle ScholarCross RefCross Ref
  159. McGuire, M., Matusik, W., Pfister, H., Hughes, J. F., and Durand, F. 2005. Defocus Video Matting. ACM Trans. Graph. (SIGGRAPH) 24, 3, 567--576. Google ScholarGoogle ScholarDigital LibraryDigital Library
  160. McGuire, M., Matusik, W., Pfister, H., Chen, B., Hughes, J. F., and Nayar, S. K. 2007. Optical Splitting Trees for High-Precision Monocular Imaging. IEEE Comput. Graph. & Appl. 27, 2, 32--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  161. Mitsunaga, T., and Nayar, S. K. 1999. Radiometric Self Calibration. In Proc. IEEE CVPR, 374--380.Google ScholarGoogle Scholar
  162. Miyazaki, D., Tan, R. T., Hara, K., and Ikeuchi, K. 2003. Polarization-based inverse rendering from a single view. In Proc. ICCV, 982--998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  163. Miyazaki, D., Kagesawa, M., and Ikeuchi, K. 2004. Transparent Surface Modelling from a Pair of Polarization Images. IEEE Trans. PAMI 26, 1, 73--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  164. Mohan, A., Huang, X., Raskar, R., and Tumblin, J. 2008. Sensing Increased Image Resolution Using Aperture Masks. In Proc. IEEE CVPR, 1--8.Google ScholarGoogle Scholar
  165. Mohan, A., Raskar, R., and Tumblin, J. 2008. Agile Spectrum Imaging: Programmable Wavelength Modulation for Cameras and Projectors. Computer Graphics Forum (Eurographics) 27, 2, 709--717.Google ScholarGoogle ScholarCross RefCross Ref
  166. Moon, P., and Spencer, D. E. 1981. The Photic Field. MIT Press.Google ScholarGoogle Scholar
  167. Müller, V. 1996. Elimination of Specular Surface-Reflectance Using Polarized and Unpolarized Light. In Proc. IEEE ECCV, 625--635. Google ScholarGoogle ScholarDigital LibraryDigital Library
  168. Murphy, D. B. 2001. Fundamentals of Light Microscopy and Electronic Imaging. Wiley-Liss.Google ScholarGoogle Scholar
  169. Muybridge, E. 1957. Animals in Motion. first ed. Dover Publications, Chapman and Hall 1899.Google ScholarGoogle Scholar
  170. Nagahara, H., Kuthirummal, S., Zhou, C., and Nayar, S. 2008. Flexible Depth of Field Photography. In Proc. ECCV, 60--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  171. Namer, E., and Schechner, Y. Y. 2005. Advanced Visibility Improvement Based on Polarization Filtered Images. In Proc. SPIE 5888, 36--45.Google ScholarGoogle Scholar
  172. Narasimhan, S., and Nayar, S. 2005. Enhancing Resolution along Multiple Imaging Dimensions using Assorted Pixels. IEEE Trans. PAMI 27, 4, 518--530. Google ScholarGoogle ScholarDigital LibraryDigital Library
  173. Narasimhan, S. G., Koppal, S. J., and Yamazaki, S. 2008. Temporal Dithering of Illumination for Fast Active Vision. In Proc. ECCV, 830--844. Google ScholarGoogle ScholarDigital LibraryDigital Library
  174. Nayar, S., and Branzoi, V. 2003. Adaptive Dynamic Range Imaging: Optical Control of Pixel Exposures over Space and Time. In Proc. IEEE ICCV, vol. 2, 1168--1175. Google ScholarGoogle ScholarDigital LibraryDigital Library
  175. Nayar, S., and Mitsunaga, T. 2000. High Dynamic Range Imaging: Spatially Varying Pixel Exposures. In Proc. IEEE CVPR, vol. 1, 472--479.Google ScholarGoogle Scholar
  176. Nayar, S. K., and Nakagawa, Y. 1994. Shape from Focus. IEEE Trans. PAMI 16, 8, 824--831. Google ScholarGoogle ScholarDigital LibraryDigital Library
  177. Nayar, S., Fang, X.-S., and Boult, T. 1993. Removal of Specularities using Color and Polarization. In Proc. IEEE CVPR, 583--590.Google ScholarGoogle Scholar
  178. Nayar, S., Branzoi, V., and Boult, T. 2004. Programmable Imaging using a Digital Micromirror Array. In Proc. IEEE CVPR, vol. I, 436--443.Google ScholarGoogle Scholar
  179. Nayar, S. K., Branzoi, V., and Boult, T. E. 2006. Programmable Imaging: Towards a Flexible Camera. IJCV 70, 1, 7--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  180. Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., and Hanrahan, P. 2005. Light field photography with a hand-held plenoptic camera. Tech. Rep. Computer Science CSTR 2005-02, Stanford University.Google ScholarGoogle Scholar
  181. Ng, R. 2005. Fourier Slice Photography. ACM Trans. Graph. (Siggraph) 24, 3, 735--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  182. Nomura, Y., Zhang, L., and Nayar, S. 2007. Scene Collages and Flexible Camera Arrays. In Proc. EGSR, 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  183. Ogata, S., Ishida, J., and Sasano, T. 1994. Optical Sensor Array in an Artificial Compound Eye. Optical Engineering 33, 11, 3649--3655.Google ScholarGoogle ScholarCross RefCross Ref
  184. Ojeda-Castaneda, J., Landgrave, J. E. A., and Escamilla, H. M. 2005. Annular Phase-Only Mask for High Focal Depth. Optics Letters 30, 13, 1647--1649.Google ScholarGoogle ScholarCross RefCross Ref
  185. Okamoto, T., and Yamaguchi, I. 1991. Simultaneous Acquisition of Spectral Image Information. Optics Letters 16, 16, 1277--1279.Google ScholarGoogle ScholarCross RefCross Ref
  186. Okano, F., Arai, J., Hoshino, H., and Yuyama, I. 1999. Three-Dimensional Video System Based on Integral Photography. Optical Engineering 38, 6, 1072--1077.Google ScholarGoogle ScholarCross RefCross Ref
  187. Optec, 2011. Separation prism technical data, Jan. www.alt-vision.com/color_prisms_tech_data.htm.Google ScholarGoogle Scholar
  188. Panavision, 2010. Genesis. www.panavision.com.Google ScholarGoogle Scholar
  189. Pandharkar, R., Kirmani, A., and Raskar, R. 2010. Lens Aberration Correction Using Locally Optimal Mask Based Low Cost Light Field Cameras. In Proc. OSA Imaging Systems, 1--3.Google ScholarGoogle Scholar
  190. Pandharkar, R., Velten, A., Bardagjy, A., Raskar, R., Bawendi, M., Kirmani, A., and Lawson, E. 2011. Estimating Motion and Size of Moving Non-Line-of-Sight Objects in Cluttered Environments. In Proc. ICCC CVPR, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  191. Park, J.-I., Lee, M.-H., Grossberg, M. D., and Nayar, S. K. 2007. Multispectral Imaging Using Multiplexed Illumination. In Proc. IEEE ICCV, 1--8.Google ScholarGoogle Scholar
  192. Parmar, M., and Reeves, S. J. 2006. Selection of Optimal Spectral Sensitivity Functions for Color Filter Arrays. In Proc. of ICIP, 1005--1008.Google ScholarGoogle Scholar
  193. Parmar, M., and Reeves, S. J. 2010. Selection of Optimal Spectral Sensitivity Functions for Color Filter Arrays. IEEE Trans. Im. Proc. 19, 12 (Dec), 3190--3203. Google ScholarGoogle ScholarDigital LibraryDigital Library
  194. Photron, 2010. FASTCAM SA5. www.photron.com/datasheet/FASTCAM_SA5.pdf.Google ScholarGoogle Scholar
  195. Pieper, R. J., and Korpel, A. 1983. Image Processing for Extended Depth of Field. Applied Optics 22, 10, 1449--1453.Google ScholarGoogle ScholarCross RefCross Ref
  196. Pixim, 2010. Digital Pixel System. www.pixim.com.Google ScholarGoogle Scholar
  197. Project, E. D. C., 2009. Harold 'Doc' Edgerton. www.edgerton-digital-collections.org/techniques/high-speed-photography.Google ScholarGoogle Scholar
  198. Prokudin-Gorskii, S. M., 1912. The Prokudin-Gorskii Photographic Records Recreated. www.loc.gov/exhibits/empire/.Google ScholarGoogle Scholar
  199. Ramanath, R., Snyder, W., Bilbro, G., and Sander, W. 2002. Demosaicking Methods for Bayer Color Arrays. Journal of Electronic Imaging 11, 3, 306--315.Google ScholarGoogle ScholarCross RefCross Ref
  200. Raskar, R., and Tumblin, J. 2009. Computational Photography: Mastering New Techniques for Lenses, Lighting, and Sensors. A. K. Peters. Google ScholarGoogle ScholarDigital LibraryDigital Library
  201. Raskar, R., Agrawal, A., and Tumblin, J. 2006. Coded Exposure Photography: Motion Deblurring using Fluttered Shutter. ACM Trans. Graph. (Siggraph) 25, 3, 795--804. Google ScholarGoogle ScholarDigital LibraryDigital Library
  202. Raskar, R., Agrawal, A., Wilson, C. A., and Veeraraghavan, A. 2008. Glare Aware Photography: 4D Ray Sampling for Reducing Glare Effects of Camera Lenses. ACM Trans. Graph. (Siggraph) 27, 3, 56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  203. Ray, S. F. 2002. High Speed Photography and Photonics. SPIE Press.Google ScholarGoogle Scholar
  204. Reddy, D., Veeraraghavan, A., and Chellappa, R. 2011. P2C2: Programmable Pixel Compressive Camera for High Speed Imaging. In Proc. IEEE CVPR, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  205. Reinhard, E., Khan, E. A., Akyüz, A. O., and Johnson, G. M. 2008. Color Imaging. A K Peters Ltd.Google ScholarGoogle Scholar
  206. Reinhard, E., Ward, G., Debevec, P., Pattanaik, S., Heidrich, W., and Myszkowski, K. 2010. High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting. Morgan Kaufmann Publishers.Google ScholarGoogle Scholar
  207. Research, V., 2010. Phantom Flex. www.visionresearch.com/Products/High-Speed-Cameras/Phantom-Flex/.Google ScholarGoogle Scholar
  208. Ri, S., Fujigaki, M., Matui, T., and Morimoto, Y. 2006. Accurate pixel-to-pixel correspondence adjustment in a digital micromirror device camera by using the phase-shifting moiré method. Applied optics 45, 27, 6940--6946.Google ScholarGoogle Scholar
  209. Richardson, H. W. 1972. Bayesian-Based Iterative Method of Image Restoration. JOSA 62, 1, 55--59.Google ScholarGoogle ScholarCross RefCross Ref
  210. Robertson, M. A., Borman, S., and Stevenson, R. L. 1999. Estimation-Theoretic Approach to Dynamic Range Enhancement Using Multiple Exposures. Journal of Electronic Imaging 12, 2003.Google ScholarGoogle Scholar
  211. Rorslett, B., 2008. Uv flower photographs. www.naturfotograf.com/index2.html.Google ScholarGoogle Scholar
  212. Rouf, M., Mantiuk, R., Heidrich, W., Trentacoste, M., and Lau, C. 2011. Glare Encoding of High Dynamic Range Images. In Proc. IEEE CVPR, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  213. Sadjadi, F. 2007. Extraction of Surface Normal and Index of Refraction using a Pair of Passive Infrared Polarimetric Sensors. In Proc. IEEE CVPR, 1--5.Google ScholarGoogle Scholar
  214. Sajadi, B., Majumder, A., Hiwada, K., Maki, A., and Raskar, R. 2011. Switchable Primaries Using Shiftable Layers of Color Filter Arrays. ACM Trans. Graph. (Siggraph) 30, 3, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  215. Schechner, Y. Y., and Karpel, N. 2004. Clear Underwater Vision. In Proc. IEEE CVPR, 536--543.Google ScholarGoogle Scholar
  216. Schechner, Y. Y., and Karpel, N. 2005. Recovery of Underwater Visibility and Structure by Polarization Analysis. IEEE Journal of Oceanic Engineering 30, 3, 570--587.Google ScholarGoogle ScholarCross RefCross Ref
  217. Schechner, Y., and Nayar, S. 2001. Generalized Mosaicing. In Proc. IEEE ICCV, vol. 1, 17--24.Google ScholarGoogle Scholar
  218. Schechner, Y., and Nayar, S. 2002. Generalized Mosaicing: Wide Field of View Multispectral Imaging. IEEE Trans. PAMI 24, 10, 1334--1348. Google ScholarGoogle ScholarDigital LibraryDigital Library
  219. Schechner, Y., and Nayar, S. K. 2003. Polarization Mosaicking: High dynamic Range and Polarization Imaging in a Wide Field of View. In Proc. SPIE 5158, 93--102.Google ScholarGoogle Scholar
  220. Schechner, Y., and Nayar, S. 2003. Generalized Mosaicing: High Dynamic Range in a Wide Field of View. IJCV 53, 3, 245--267. Google ScholarGoogle ScholarDigital LibraryDigital Library
  221. Schechner, Y., and Nayar, S. 2004. Uncontrolled Modulation Imaging. In Proc. IEEE CVPR, 197--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  222. Schechner, Y., and Nayar, S. 2005. Generalized Mosaicing: Polarization Panorama. IEEE Trans. PAMI 27, 4, 631--636. Google ScholarGoogle ScholarDigital LibraryDigital Library
  223. Schechner, Y., Shamir, J., and Kiryati, N. 1999. Polarization-Based Decorrelation of Transparent Layers: The Inclination Angle of an Invisible Surface. In Proc. ICCV, 814--819. Google ScholarGoogle ScholarDigital LibraryDigital Library
  224. Schechner, Y., Narasimhan, S. G., and Nayar, S. K. 2001. Instant Dehazing of Images using Polarization. In Proc. IEEE CVPR, 325--332.Google ScholarGoogle Scholar
  225. Schechner, Y., Narasimhan, S. G., and Nayar, S. K. 2003. Polarization-Based Vision through Haze. Applied Optics 42, 3, 511--525.Google ScholarGoogle ScholarCross RefCross Ref
  226. Schechner, Y., Nayar, S., and Belhumeur, P. 2007. Multiplexing for Optimal Lighting. IEEE Trans. PAMI 29, 8, 1339--1354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  227. Schönfelder, T., 2003. Polarization Division Multiplexing in Optical Data Transmission Systems. US Patent 6,580,535.Google ScholarGoogle Scholar
  228. Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Ghosh, A., and Vorozcovs, A. 2004. High Dynamic Range Display Systems. ACM Trans. on Graph. (SIGGRAPH 2004) 23, 3, 760--768. Google ScholarGoogle ScholarDigital LibraryDigital Library
  229. Semiconductor, C., 2010. LUPA Image Sensors. www.cypress.com/?id=206.Google ScholarGoogle Scholar
  230. Settles, G. 2001. Schlieren & Shadowgraph Techniques. Springer.Google ScholarGoogle Scholar
  231. Shahar, O., Faktor, A., and Irani, M. 2011. Space-Time Super-Resolution from a Single Video. In Proc. IEEE CVPR, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  232. Shechtman, E., Caspi, Y., and Irani, M. 2002. Increasing Space-Time Resolution in Video. In Proc. ECCV, 753--768. Google ScholarGoogle ScholarDigital LibraryDigital Library
  233. Shechtman, E., Caspi, Y., and Irani, M. 2005. Space-Time Super-Resolution. IEEE Trans. PAMI 27, 4, 531--545. Google ScholarGoogle ScholarDigital LibraryDigital Library
  234. Shimadzu, 2010. HyperVision HPV-2. www.shimadzu.com/products/test/hsvc/oh80jt0000001d6t.html.Google ScholarGoogle Scholar
  235. Siddiqui, A. S., and Zhou, J. 1991. Two-Channel Optical Fiber Transmission Using Polarization Division Multiplexing. Journal of Optical Communications 12, 2, 47--49.Google ScholarGoogle ScholarCross RefCross Ref
  236. Smith, B. M., Zhang, L., Jin, H., and Agarwala, A. 2009. Light Field Video Stabilization. In Proc. of ICCV, 1--8.Google ScholarGoogle Scholar
  237. SpheronVR, 2010. SpheroCam HDR. www.spheron.com.Google ScholarGoogle Scholar
  238. Starck, J., and Hilton, A. 2008. Model-based human shape reconstruction from multiple views. Computer Vision and Image Understanding (CVIU) 111, 2, 179--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  239. Taguchi, Y., Agrawal, A., Ramalingam, S., and Veeraraghavan, A. 2010. Axial Light Fields for Curved Mirrors: Reflect Your Perspective, Widen Your View. In Proc. IEEE CVPR, 1--8.Google ScholarGoogle Scholar
  240. Taguchi, Y., Agrawal, A., Veeraraghavan, A., Ramalingam, S., and Raskar, R. 2010. Axial-Cones: Modeling Spherical Catadioptric Cameras for Wide-Angle Light Field Rendering. ACM Trans. Graph. 29, 172:1--172:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  241. Tai, Y., Hao, D., Brown, M. S., and Lin, S. 2010. Correction of Spatially Varying Image and Video Motion Blur using a Hybrid Camera. IEEE Trans. PAMI 32, 6, 1012--1028. Google ScholarGoogle ScholarDigital LibraryDigital Library
  242. Talvala, E.-V., Adams, A., Horowitz, M., and Levoy, M. 2007. Veiling Glare in High Dynamic Range Imaging. ACM Trans. Graph. (Siggraph) 26, 3, 37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  243. Tanida, J., Kumagai, T., Yamada, K., Miyatake, S., Ishida, K., Morimoto, T., Kondou, N., Miyazaki, D., and Ichioka, Y. 2001. Thin Observation Module by Bound Optics (TOMBO): Concept and Experimental Verification. Applied Optics 40, 11, 1806--1813.Google ScholarGoogle ScholarCross RefCross Ref
  244. Tanida, J., Shogenji, R., Kitamura, Y., Yamada, K., Miyamoto, M., and Miyatake, S. 2003. Color Imaging with an Integrated Compound Imaging System. Optics Express 11, 18, 2109--2117.Google ScholarGoogle ScholarCross RefCross Ref
  245. Telleen, J., Sullivan, A., Yee, J., Wang, O., Gunawardane, P., Collins, I., and Davis, J. 2007. Synthetic Shutter Speed Imaging. Computer Graphics Forum (Eurographics) 26, 3, 591--598.Google ScholarGoogle ScholarCross RefCross Ref
  246. Toyooka, S., and Hayasaka, N. 1997. Two-Dimensional Spectral Analysis using Broad-Band Filters. Optical Communications 137 (Apr), 22--26.Google ScholarGoogle ScholarCross RefCross Ref
  247. Tumblin, J., Agrawal, A., and Raskar, R. 2005. Why I want a Gradient Camera. In Proc. IEEE CVPR, 103--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  248. Tyson, R. K. 1991. Principles of Adaptive Optics. Academic Press.Google ScholarGoogle Scholar
  249. Ueda, K., Koike, T., Takahashi, K., and Naemura, T. 2008. Adaptive Integral Photography Imaging with Variable-Focus Lens Array. In Proc SPIE: Stereoscopic Displays and Applications XIX, 68031A--9.Google ScholarGoogle Scholar
  250. Ueda, K., Lee, D., Koike, T., Takahashi, K., and Naemura, T., 2008. Multi-Focal Compound Eye: Liquid Lens Array for Computational Photography. ACM SIGGRAPH New Tech Demo. Google ScholarGoogle ScholarDigital LibraryDigital Library
  251. Umeyama, S., and Godin, G. 2004. Separation of Diffuse and Specular Components of Surface Reflection by Use of Polarization and Statistical Analysis of Images. IEEE Trans. PAMI 26, 5, 639--647. Google ScholarGoogle ScholarDigital LibraryDigital Library
  252. Unger, J., Wenger, A., Hawkins, T., Gardner, A., and Debevec, P. 2003. Capturing and Rendering with Incident Light Fields. In Proc. EGSR, 141--149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  253. Vagni, F. 2007. Survey of Hyperspectral and Multispectral Imaging Technologies. Tech. Rep. TR-SET-065-P3, NATO Research and Technology.Google ScholarGoogle Scholar
  254. Vaish, V., Szeliski, R., Zitnick, C. L., Kang, S. B., and Levoy, M. 2006. Reconstructing Occluded Surfaces using Synthetic Apertures: Stereo, Focus and Robust Measures. In Proc. IEEE CVPR, 23--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  255. Valley, G., 2010. Viper FilmStream Camera. www.grassvalley.com.Google ScholarGoogle Scholar
  256. van Putten, E., Akbulut, D., Bertolotti, J., Vos, W., Lagendijk, A., and Mosk, A. 2011. Scattering Lens Resolves Sub-100 nm Structures with Visible Light. Physical Review Letters 106, 19, 1--4.Google ScholarGoogle ScholarCross RefCross Ref
  257. Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A., and Tumblin, J. 2007. Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocussing. ACM Trans. Graph. (Siggraph) 26, 3, 69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  258. Veeraraghavan, A., Raskar, R., Agrawal, A., Chellappa, R., Mohan, A., and Tumblin, J. 2008. Non-Refractive Modulators for Encoding and Capturing Scene Appearance and Depth. In Proc. IEEE CVPR, 1--8.Google ScholarGoogle Scholar
  259. Veeraraghavan, A., Reddy, D., and Raskar, R. 2011. Coded Strobing Photography: Compressive Sensing of High Speed Periodic Videos. IEEE Trans. PAMI, to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  260. Vlasic, D., Peers, P., Baran, I., Debevec, P., Popović, J., Rusinkiewicz, S., and Matusik, W. 2009. Dynamic Shape Capture using Multi-View Photometric Stereo. In ACM Trans. Graph. (SIGGRAPH Asia), 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  261. Wagadarikar, A., Pitsianis, N., Sun, X., and Brady, D. 2008. Spectral Image Estimation for Coded Aperture Snapshot Spectral Imagers. In Proc. SPIE 7076, 707602.Google ScholarGoogle Scholar
  262. Wagadarikar, A., Pitsianis, N., Sun, X., and Brady, D. 2009. Video Rate Spectral Imaging using a Coded Aperture Snapshot Spectral Imager. Optics Express 17, 8, 6368--6388.Google ScholarGoogle ScholarCross RefCross Ref
  263. Wandinger, U. 2005. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere. Springer.Google ScholarGoogle Scholar
  264. Wang, S., and Heidrich, W. 2004. The Design of an Inexpensive Very High Resolution Scan Camera System. Computer Graphics Forum (Eurographics) 23, 10, 441--450.Google ScholarGoogle ScholarCross RefCross Ref
  265. Wehner, R. 1976. Polarized-Light Navigation by Insects. Scientific American 235, 106115.Google ScholarGoogle ScholarCross RefCross Ref
  266. Wetzstein, G., Ihrke, I., and Heidrich, W. 2010. Sensor Saturation in Fourier Multiplexed Imaging. In Proc. IEEE CVPR, 1--8.Google ScholarGoogle Scholar
  267. Wetzstein, G., Ihrke, I., Lanman, D., and Heidrich, W. 2011. Computational Plenoptic Imaging. Computer Graphics Forum 30, 23972426.Google ScholarGoogle ScholarCross RefCross Ref
  268. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: Tomographic Image Synthesis for Attenuation-based Light Field and High Dynamic Range Displays. ACM Trans. Graph. (Siggraph). Google ScholarGoogle ScholarDigital LibraryDigital Library
  269. Wetzstein, G., Ihrke, I., Gukov, A., and Heidrich, W. 2011. Towards a Database of High-dimensional Plenoptic Images. In Proc. ICCP (Poster).Google ScholarGoogle Scholar
  270. Wetzstein, G., Raskar, R., and Heidrich, W. 2011. Hand-Held Schlieren Photography with Light Field Probes. In Proc. ICCP, 1--8.Google ScholarGoogle Scholar
  271. Wetzstein, G., Lanman, D., Hirsch, M., and Gutierrez, D. 2012. Computational Displays. In ACM SIGGRAPH 2012 Courses.Google ScholarGoogle Scholar
  272. Wilburn, B., Smulski, M., Lee, K., and Horowitz, M. A. 2002. The Light Field Video Camera. In SPIE Electronic Imaging, 29--36.Google ScholarGoogle Scholar
  273. Wilburn, B., Joshi, N., Vaish, V., Levoy, M., and Horowitz, M. 2004. High Speed Video Using a Dense Array of Cameras. In Proc. IEEE CVPR, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  274. Wilburn, B., Joshi, N., Vaish, V., Talvala, E.-V., Antunez, E., Barth, A., Adams, A., Horowitz, M., and Levoy, M. 2005. High Performance Imaging using Large Camera Arrays. ACM Trans. Graph. (Siggraph) 24, 3, 765--776. Google ScholarGoogle ScholarDigital LibraryDigital Library
  275. Wolff, L. B., and Boult, T. E. 1991. Constraining Object Features using a Polarization Reflectance Model. IEEE Trans. PAMI 13, 7, 635--657. Google ScholarGoogle ScholarDigital LibraryDigital Library
  276. Wyszecki, G., and Stiles, W. 1982. Color Science. John Wiley and Sons, Inc.Google ScholarGoogle Scholar
  277. Yang, J., Lee, C., Isaksen, A., and McMillan, L., 2000. A Low-Cost Portable Light Field Capture Device. ACM SIGGRAPH Technical Sketch.Google ScholarGoogle Scholar
  278. Yang, J. C., Everett, M., Buehler, C., and McMillan, L. 2002. A Real-Time Distributed Light Field Camera. In Proc. EGSR, 77--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  279. Yao, S., 2008. Optical Communications Based on Optical Polarization Multiplexing and Demultiplexing. US Patent 7,343,100.Google ScholarGoogle Scholar
  280. Yasuma, F., Mitsunaga, T., Iso, D., and Nayar, S. K. 2010. Generalized Assorted Pixel Camera: Post-Capture Control of Resolution, Dynamic Range and Spectrum. IEEE Trans. Im. Proc. 99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  281. Zhang, C., and Chen, T. 2005. Light Field Capturing with Lensless Cameras. In Proc. ICIP, III -- 792--5.Google ScholarGoogle Scholar
  282. Zhou, C., and Nayar, S. 2009. What are Good Apertures for Defocus Deblurring? In Proc. ICCP, 1--8.Google ScholarGoogle Scholar
  283. Zhou, C., Lin, S., and Nayar, S. K. 2009. Coded Aperture Pairs for Depth from Defocus. In Proc. ICCV.Google ScholarGoogle Scholar
  284. Zwicker, M., Matusik, W., Durand, F., and Pfister, H. 2006. Antialiasing for automultiscopic 3D displays. In Eurographics Symposium on Rendering. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SIGGRAPH '12: ACM SIGGRAPH 2012 Courses
    August 2012
    1998 pages
    ISBN:9781450316781
    DOI:10.1145/2343483

    Copyright © 2012 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 5 August 2012

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

    Acceptance Rates

    Overall Acceptance Rate1,822of8,601submissions,21%

    Upcoming Conference

    SIGGRAPH '24

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader